No.: **1**/2020.

Name/Neptun: Pathan Zaid Khan/A3YI00

Traffic Flow Exercise 2

Application of speed-flow relationship

Determine the capacity of a road segment (without intersections) and scale (plan) the required capacity (supply) which fits to the traffic (demand).

1) Determine the capacity (VPHPL, q) of a single lane (and its $c_s=80$ % spare-value) as a dependent of speed (velocity, v) in a range of 0-120 km/h with intervals of 5-5 km/h. Afterwards calculate the maximum flow (capacity, q_{max}) and the optimal speed (v_{opt}) considering the following average paramameter values (g = 9,81 m/s²):

I_{veh}	=	6,2	[m] vehicle length
ls	=	0,6	[m] safety dinstance
tr	=	1,2	[s] reaction time
φ	=	0,65	[-] friction factor
qs	=	-0,2	[%] slope (+ is uphill, - is downhill)
α	=	0,5	[-] representing reduced distance headways
c			

The results of the calculations should be presented in a table as well as in a chart.

2) Scale (plan) the required number of lanes (considering spare capacity as well, c_s) by the use of previuosly determined flow-speed relationship. The traffic volume (demand) can be seen in the following chart. Afterwards calculate the capacity utilisation (CU).

The average daily traffic volume (VPD) of the peak cross-section is the following:

Veh/day	PCE*	PCE/day
7365	1,0	
1512	1,4	
1171	1,8	
60	2,5	
261	1,8	
170	2,5	
140	0,7	
	7365 1512 1171 60 261 170	7365 1,0 1512 1,4 1171 1,8 60 2,5 261 1,8 170 2,5 140 0,7

* Passenger car equivalent (PCE).

- the peak hour traffic (PHT) is 11 % (ω) of average daily traffic volume (VPD),
- when peak hour traffic (as the basis of planning) occures on the road the average spacemean speed (v_s, speed of traffic flow) is 39,6 km/h,
- the relation between the number of lanes and the aggregate capacity is the following:

Number of lanes	Aggregate capacity (c _a)
1	100 %
2	175 %
3	250 %

3) Examine whether changing (increasing/decreasing) number of lanes is neccessary, if:

- the speed of traffic flow changes to 37,9 km/h,
- and the PHT changes by -4,8 % simultaneously.

April 2020

No.: **2**/2020.

Name/Neptun: Araujo Oliveira Manoel Victor/BII16N

Traffic Flow Exercise 2

Application of speed-flow relationship

Determine the capacity of a road segment (without intersections) and scale (plan) the required capacity (supply) which fits to the traffic (demand).

1) Determine the capacity (VPHPL, q) of a single lane (and its c_s =80 % spare-value) as a dependent of speed (velocity, v) in a range of 0-120 km/h with intervals of 5-5 km/h. Afterwards calculate the maximum flow (capacity, q_{max}) and the optimal speed (v_{opt}) considering the following average paramameter values (g = 9,81 m/s²):

I_{veh}	=	5,4	[m] vehicle length
ls	=	0,5	[m] safety dinstance
tr	=	1,1	[s] reaction time
φ	=	0,78	[-] friction factor
qs	=	-2,7	[%] slope (+ is uphill, - is downhill)
α	=	0,5	[-] representing reduced distance headways

The results of the calculations should be presented in a table as well as in a chart.

2) Scale (plan) the required number of lanes (considering spare capacity as well, c_s) by the use of previuosly determined flow-speed relationship. The traffic volume (demand) can be seen in the following chart. Afterwards calculate the capacity utilisation (CU).

The average daily traffic volume (VPD) of the peak cross-section is the following:

Vehicle category	Veh/day	PCE*	PCE/day
passenger car	6722	1,0	
light truck	2444	1,4	
heavy truck	817	1,8	
trailer truck	235	2,5	
non-articulated bus	255	1,8	
articulated bus	162	2,5	
motorcycle	64	0,7	

* Passenger car equivalent (PCE).

- the peak hour traffic (PHT) is 9,1 % (ω) of average daily traffic volume (VPD),
- when peak hour traffic (as the basis of planning) occures on the road the average spacemean speed (v_s , speed of traffic flow) is 38,7 km/h,
- the relation between the number of lanes and the aggregate capacity is the following:

Number of lanes	Aggregate capacity (c _a)
1	100 %
2	175 %
3	250 %

3) Examine whether changing (increasing/decreasing) number of lanes is neccessary, if:

- the speed of traffic flow changes to 32,5 km/h,
- and the PHT changes by -8,3 % simultaneously.

April 2020

No.: **3**/2020. Name/Neptun: Alkhatatne Malek Abdulrahman Salameh/BIXGSM

Traffic Flow Exercise 2

Application of speed-flow relationship

Determine the capacity of a road segment (without intersections) and scale (plan) the required capacity (supply) which fits to the traffic (demand).

1) Determine the capacity (VPHPL, q) of a single lane (and its $c_s=80$ % spare-value) as a dependent of speed (velocity, v) in a range of 0-120 km/h with intervals of 5-5 km/h. Afterwards calculate the maximum flow (capacity, q_{max}) and the optimal speed (v_{opt}) considering the following average paramameter values (g = 9,81 m/s²):

I_{veh}	=	6	[m] vehicle length
ls	=	0,6	[m] safety dinstance
tr	=	1,1	[s] reaction time
φ	=	0,59	[-] friction factor
qs	=	-1,3	[%] slope (+ is uphill, - is downhill)
α	=	0,5	[-] representing reduced distance headways

The results of the calculations should be presented in a table as well as in a chart.

2) Scale (plan) the required number of lanes (considering spare capacity as well, c_s) by the use of previuosly determined flow-speed relationship. The traffic volume (demand) can be seen in the following chart. Afterwards calculate the capacity utilisation (CU).

The average daily traffic volume (VPD) of the peak cross-section is the following:

Veh/day	PCE*	PCE/day
12453	1,0	
1341	1,4	
1700	1,8	
78	2,5	
106	1,8	
62	2,5	
145	0,7	
	12453 1341 1700 78 106 62	12453 1,0 1341 1,4 1700 1,8 78 2,5 106 1,8 62 2,5

* Passenger car equivalent (PCE).

- the peak hour traffic (PHT) is 12 % (ω) of average daily traffic volume (VPD),
- when peak hour traffic (as the basis of planning) occures on the road the average spacemean speed (v_s , speed of traffic flow) is 42,3 km/h,
- the relation between the number of lanes and the aggregate capacity is the following:

Number of lanes	Aggregate capacity (c _a)
1	100 %
2	175 %
3	250 %

3) Examine whether changing (increasing/decreasing) number of lanes is neccessary, if:

- the speed of traffic flow changes to 35,8 km/h,
- and the PHT changes by -10,6 % simultaneously.

April 2020

No.: **4**/2020.

Name/Neptun: Husein Esra'a Abdel Razzag/DTKIGX

Traffic Flow Exercise 2

Application of speed-flow relationship

Determine the capacity of a road segment (without intersections) and scale (plan) the required capacity (supply) which fits to the traffic (demand).

1) Determine the capacity (VPHPL, q) of a single lane (and its $c_s=80$ % spare-value) as a dependent of speed (velocity, v) in a range of 0-120 km/h with intervals of 5-5 km/h. Afterwards calculate the maximum flow (capacity, q_{max}) and the optimal speed (v_{opt}) considering the following average paramameter values (g = 9,81 m/s²):

I_{veh}	=	6,4	[m] vehicle length
ls	=	0,5	[m] safety dinstance
tr	=	1,1	[s] reaction time
φ	=	0,77	[-] friction factor
qs	=	1,1	[%] slope (+ is uphill, - is downhill)
α	=	0,6	[-] representing reduced distance headways

The results of the calculations should be presented in a table as well as in a chart.

2) Scale (plan) the required number of lanes (considering spare capacity as well, c_s) by the use of previuosly determined flow-speed relationship. The traffic volume (demand) can be seen in the following chart. Afterwards calculate the capacity utilisation (CU).

The average daily traffic volume (VPD) of the peak cross-section is the following:

Veh/day	PCE*	PCE/day
7611	1,0	
1444	1,4	
1611	1,8	
123	2,5	
339	1,8	
115	2,5	
85	0,7	
	7611 1444 1611 123 339 115	7611 1,0 1444 1,4 1611 1,8 123 2,5 339 1,8 115 2,5

* Passenger car equivalent (PCE).

- the peak hour traffic (PHT) is 9,9 % (ω) of average daily traffic volume (VPD),
- when peak hour traffic (as the basis of planning) occures on the road the average space-mean speed (v_s , speed of traffic flow) is 57,4 km/h,
- the relation between the number of lanes and the aggregate capacity is the following:

Number of lanes	Aggregate capacity (c _a)
1	100 %
2	175 %
3	250 %

3) Examine whether changing (increasing/decreasing) number of lanes is neccessary, if:

- the speed of traffic flow changes to 56,3 km/h,
- and the PHT changes by +21,8 % simultaneously.

No.: **5**/2020.

Name/Neptun: Sagidullayeva Slushash/DU3H70

Traffic Flow Exercise 2

Application of speed-flow relationship

Determine the capacity of a road segment (without intersections) and scale (plan) the required capacity (supply) which fits to the traffic (demand).

1) Determine the capacity (VPHPL, q) of a single lane (and its $c_s=80$ % spare-value) as a dependent of speed (velocity, v) in a range of 0-120 km/h with intervals of 5-5 km/h. Afterwards calculate the maximum flow (capacity, q_{max}) and the optimal speed (v_{opt}) considering the following average paramameter values (g = 9,81 m/s²):

I_{veh}	=	5 <i>,</i> 6	[m] vehicle length
ls	=	0,7	[m] safety dinstance
tr	=	1	[s] reaction time
φ	=	0,57	[-] friction factor
qs	=	-1,1	[%] slope (+ is uphill, - is downhill)
α	=	0,6	[-] representing reduced distance headways

The results of the calculations should be presented in a table as well as in a chart.

2) Scale (plan) the required number of lanes (considering spare capacity as well, c_s) by the use of previuosly determined flow-speed relationship. The traffic volume (demand) can be seen in the following chart. Afterwards calculate the capacity utilisation (CU).

The average daily traffic volume (VPD) of the peak cross-section is the following:

Veh/day	PCE*	PCE/day
7365	1,0	
2023	1,4	
1171	1,8	
79	2,5	
295	1,8	
29	2,5	
178	0,7	
	7365 2023 1171 79 295 29	7365 1,0 2023 1,4 1171 1,8 79 2,5 295 1,8 29 2,5

* Passenger car equivalent (PCE).

- the peak hour traffic (PHT) is 10,8 % (ω) of average daily traffic volume (VPD),
- when peak hour traffic (as the basis of planning) occures on the road the average spacemean speed (v_s, speed of traffic flow) is 40,9 km/h,
- the relation between the number of lanes and the aggregate capacity is the following:

Number of lanes	Aggregate capacity (c _a)
1	100 %
2	175 %
3	250 %

3) Examine whether changing (increasing/decreasing) number of lanes is neccessary, if:

- the speed of traffic flow changes to 39,3 km/h,
- and the PHT changes by +16,1 % simultaneously.

No.: **6**/2020.

Name/Neptun: Dibirov Muslum/DUKV1Z

Traffic Flow Exercise 2

Application of speed-flow relationship

Determine the capacity of a road segment (without intersections) and scale (plan) the required capacity (supply) which fits to the traffic (demand).

1) Determine the capacity (VPHPL, q) of a single lane (and its $c_s=80$ % spare-value) as a dependent of speed (velocity, v) in a range of 0-120 km/h with intervals of 5-5 km/h. Afterwards calculate the maximum flow (capacity, q_{max}) and the optimal speed (v_{opt}) considering the following average paramameter values (g = 9,81 m/s²):

I_{veh}	=	6,3	[m] vehicle length
ls	=	0,7	[m] safety dinstance
tr	=	1	[s] reaction time
φ	=	0,63	[-] friction factor
qs	=	2,7	[%] slope (+ is uphill, - is downhill)
α	=	0,5	[-] representing reduced distance headways

The results of the calculations should be presented in a table as well as in a chart.

2) Scale (plan) the required number of lanes (considering spare capacity as well, c_s) by the use of previuosly determined flow-speed relationship. The traffic volume (demand) can be seen in the following chart. Afterwards calculate the capacity utilisation (CU).

The average daily traffic volume (VPD) of the peak cross-section is the following:

		PCE/day
14056	1,0	
2222	1,4	
1539	1,8	
279	2,5	
428	1,8	
120	2,5	
231	0,7	
	2222 1539 279 428 120	2222 1,4 1539 1,8 279 2,5 428 1,8 120 2,5 231 0,7

* Passenger car equivalent (PCE).

- the peak hour traffic (PHT) is 12,7 % (ω) of average daily traffic volume (VPD),
- when peak hour traffic (as the basis of planning) occures on the road the average spacemean speed (v_s, speed of traffic flow) is 59 km/h,
- the relation between the number of lanes and the aggregate capacity is the following:

Number of lanes	Aggregate capacity (c _a)
1	100 %
2	175 %
3	250 %

3) Examine whether changing (increasing/decreasing) number of lanes is neccessary, if:

- the speed of traffic flow changes to 59,7 km/h,
- and the PHT changes by -2 % simultaneously.

April 2020

No.: **7**/2020.

Name/Neptun: Matalqah Issa Mamoun Saleh/F1R6LA

Traffic Flow Exercise 2

Application of speed-flow relationship

Determine the capacity of a road segment (without intersections) and scale (plan) the required capacity (supply) which fits to the traffic (demand).

1) Determine the capacity (VPHPL, q) of a single lane (and its $c_s=80$ % spare-value) as a dependent of speed (velocity, v) in a range of 0-120 km/h with intervals of 5-5 km/h. Afterwards calculate the maximum flow (capacity, q_{max}) and the optimal speed (v_{opt}) considering the following average paramameter values (g = 9,81 m/s²):

I_{veh}	=	6,3	[m] vehicle length
ls	=	0,7	[m] safety dinstance
tr	=	1	[s] reaction time
φ	=	0,69	[-] friction factor
qs	=	-0,4	[%] slope (+ is uphill, - is downhill)
α	=	0,5	[-] representing reduced distance headways

The results of the calculations should be presented in a table as well as in a chart.

2) Scale (plan) the required number of lanes (considering spare capacity as well, c_s) by the use of previuosly determined flow-speed relationship. The traffic volume (demand) can be seen in the following chart. Afterwards calculate the capacity utilisation (CU).

The average daily traffic volume (VPD) of the peak cross-section is the following:

9389	1,0	
2889	1,4	
1503	1,8	
78	2,5	
428	1,8	
135	2,5	
78	0,7	
	2889 1503 78 428 135	2889 1,4 1503 1,8 78 2,5 428 1,8 135 2,5 78 0,7

* Passenger car equivalent (PCE).

- the peak hour traffic (PHT) is 12,2 % (ω) of average daily traffic volume (VPD),
- when peak hour traffic (as the basis of planning) occures on the road the average spacemean speed (v_s, speed of traffic flow) is 63 km/h,
- the relation between the number of lanes and the aggregate capacity is the following:

Number of lanes	Aggregate capacity (c _a)
1	100 %
2	175 %
3	250 %

3) Examine whether changing (increasing/decreasing) number of lanes is neccessary, if:

- the speed of traffic flow changes to 62,4 km/h,
- and the PHT changes by +5,5 % simultaneously.

April 2020

No.: **8**/2020.

Name/Neptun: Alatawneh Anas Abdullah Ahmad/H6ATDS

Traffic Flow Exercise 2

Application of speed-flow relationship

Determine the capacity of a road segment (without intersections) and scale (plan) the required capacity (supply) which fits to the traffic (demand).

1) Determine the capacity (VPHPL, q) of a single lane (and its $c_s=80$ % spare-value) as a dependent of speed (velocity, v) in a range of 0-120 km/h with intervals of 5-5 km/h. Afterwards calculate the maximum flow (capacity, q_{max}) and the optimal speed (v_{opt}) considering the following average paramameter values (g = 9,81 m/s²):

I_{veh}	=	6,3	[m] vehicle length
ls	=	0,6	[m] safety dinstance
tr	=	1,2	[S] reaction time
φ	=	0,62	[-] friction factor
qs	=	-1,9	[%] slope (+ is uphill, - is downhill)
α	=	0,5	[-] representing reduced distance headways

The results of the calculations should be presented in a table as well as in a chart.

2) Scale (plan) the required number of lanes (considering spare capacity as well, c_s) by the use of previuosly determined flow-speed relationship. The traffic volume (demand) can be seen in the following chart. Afterwards calculate the capacity utilisation (CU).

The average daily traffic volume (VPD) of the peak cross-section is the following:

Veh/day	PCE*	PCE/day
13468	1,0	
1541	1,4	
1567	1,8	
129	2,5	
348	1,8	
67	2,5	
252	0,7	
	13468 1541 1567 129 348 67	13468 1,0 1541 1,4 1567 1,8 129 2,5 348 1,8 67 2,5

* Passenger car equivalent (PCE).

- the peak hour traffic (PHT) is 10,6 % (ω) of average daily traffic volume (VPD),
- when peak hour traffic (as the basis of planning) occures on the road the average spacemean speed (v_s, speed of traffic flow) is 60,9 km/h,
- the relation between the number of lanes and the aggregate capacity is the following:

Number of lanes	Aggregate capacity (c _a)
1	100 %
2	175 %
3	250 %

3) Examine whether changing (increasing/decreasing) number of lanes is neccessary, if:

- the speed of traffic flow changes to 59,7 km/h,
- and the PHT changes by -7,2 % simultaneously.

April 2020

No.: **9**/2020.

Name/Neptun: Farias Chaves Quirino Yasmin/IMXR0M

Traffic Flow Exercise 2

Application of speed-flow relationship

Determine the capacity of a road segment (without intersections) and scale (plan) the required capacity (supply) which fits to the traffic (demand).

1) Determine the capacity (VPHPL, q) of a single lane (and its $c_s=80$ % spare-value) as a dependent of speed (velocity, v) in a range of 0-120 km/h with intervals of 5-5 km/h. Afterwards calculate the maximum flow (capacity, q_{max}) and the optimal speed (v_{opt}) considering the following average paramameter values (g = 9,81 m/s²):

I_{veh}	=	6,2	[m] vehicle length
ls	=	0,6	[m] safety dinstance
tr	=	1	[s] reaction time
φ	=	0,69	[-] friction factor
qs	=	-2,3	[%] slope (+ is uphill, - is downhill)
α	=	0,5	[-] representing reduced distance headways

The results of the calculations should be presented in a table as well as in a chart.

2) Scale (plan) the required number of lanes (considering spare capacity as well, c_s) by the use of previuosly determined flow-speed relationship. The traffic volume (demand) can be seen in the following chart. Afterwards calculate the capacity utilisation (CU).

The average daily traffic volume (VPD) of the peak cross-section is the following:

Vehicle category	Veh/day	PCE*	PCE/day
passenger car	13833	1,0	
light truck	1056	1,4	
heavy truck	1756	1,8	
trailer truck	293	2,5	
non-articulated bus	439	1,8	
articulated bus	138	2,5	
motorcycle	145	0,7	
motorcycle		0,7	

* Passenger car equivalent (PCE).

- the peak hour traffic (PHT) is 11 % (ω) of average daily traffic volume (VPD),
- when peak hour traffic (as the basis of planning) occures on the road the average spacemean speed (v_s , speed of traffic flow) is 51,4 km/h,
- the relation between the number of lanes and the aggregate capacity is the following:

Number of lanes	Aggregate capacity (c _a)
1	100 %
2	175 %
3	250 %

3) Examine whether changing (increasing/decreasing) number of lanes is neccessary, if:

- the speed of traffic flow changes to 47,1 km/h,
- and the PHT changes by -6,1 % simultaneously.

April 2020

No.: **10**/2020. Name/Nept

Name/Neptun: Lopez Lizarraga Julio Cesar/LPMZKT

Traffic Flow Exercise 2

Application of speed-flow relationship

Determine the capacity of a road segment (without intersections) and scale (plan) the required capacity (supply) which fits to the traffic (demand).

1) Determine the capacity (VPHPL, q) of a single lane (and its c_s =80 % spare-value) as a dependent of speed (velocity, v) in a range of 0-120 km/h with intervals of 5-5 km/h. Afterwards calculate the maximum flow (capacity, q_{max}) and the optimal speed (v_{opt}) considering the following average paramameter values (g = 9,81 m/s²):

I_{veh}	=	6,5	[m] vehicle length
ls	=	0,6	[m] safety dinstance
tr	=	0,9	[s] reaction time
φ	=	0,72	[-] friction factor
qs	=	-0,1	[%] slope (+ is uphill, - is downhill)
α	=	0,5	[-] representing reduced distance headways

The results of the calculations should be presented in a table as well as in a chart.

2) Scale (plan) the required number of lanes (considering spare capacity as well, c_s) by the use of previuosly determined flow-speed relationship. The traffic volume (demand) can be seen in the following chart. Afterwards calculate the capacity utilisation (CU).

The average daily traffic volume (VPD) of the peak cross-section is the following:

Veh/day	PCE*	PCE/day
8174	1,0	
1439	1,4	
800	1,8	
265	2,5	
439	1,8	
125	2,5	
64	0,7	
	8174 1439 800 265 439 125	8174 1,0 1439 1,4 800 1,8 265 2,5 439 1,8 125 2,5

* Passenger car equivalent (PCE).

- the peak hour traffic (PHT) is 11,4 % (ω) of average daily traffic volume (VPD),
- when peak hour traffic (as the basis of planning) occures on the road the average spacemean speed (v_s , speed of traffic flow) is 50,9 km/h,
- the relation between the number of lanes and the aggregate capacity is the following:

Number of lanes	Aggregate capacity (c _a)
1	100 %
2	175 %
3	250 %

3) Examine whether changing (increasing/decreasing) number of lanes is neccessary, if:

- the speed of traffic flow changes to 50 km/h,
- and the PHT changes by -6,6 % simultaneously.

April 2020

No.: **11**/2020.

Name/Neptun: Al Qadri Yahya/R59DCB

Traffic Flow Exercise 2

Application of speed-flow relationship

Determine the capacity of a road segment (without intersections) and scale (plan) the required capacity (supply) which fits to the traffic (demand).

1) Determine the capacity (VPHPL, q) of a single lane (and its $c_s=80$ % spare-value) as a dependent of speed (velocity, v) in a range of 0-120 km/h with intervals of 5-5 km/h. Afterwards calculate the maximum flow (capacity, q_{max}) and the optimal speed (v_{opt}) considering the following average paramameter values (g = 9,81 m/s²):

I_{veh}	=	6,1	[m] vehicle length
ls	=	0,6	[m] safety dinstance
tr	=	1	[s] reaction time
φ	=	0,66	[-] friction factor
qs	=	0,9	[%] slope (+ is uphill, - is downhill)
α	=	0,6	[-] representing reduced distance headways

The results of the calculations should be presented in a table as well as in a chart.

2) Scale (plan) the required number of lanes (considering spare capacity as well, c_s) by the use of previuosly determined flow-speed relationship. The traffic volume (demand) can be seen in the following chart. Afterwards calculate the capacity utilisation (CU).

The average daily traffic volume (VPD) of the peak cross-section is the following:

Vehicle category	Veh/day	PCE*	PCE/day
passenger car	8722	1,0	
light truck	3000	1,4	
heavy truck	925	1,8	
trailer truck	119	2,5	
non-articulated bus	158	1,8	
articulated bus	73	2,5	
motorcycle	148	0,7	

* Passenger car equivalent (PCE).

- the peak hour traffic (PHT) is 11,8 % (ω) of average daily traffic volume (VPD),
- when peak hour traffic (as the basis of planning) occures on the road the average spacemean speed (v_s , speed of traffic flow) is 54,7 km/h,
- the relation between the number of lanes and the aggregate capacity is the following:

Number of lanes	Aggregate capacity (c _a)
1	100 %
2	175 %
3	250 %

3) Examine whether changing (increasing/decreasing) number of lanes is neccessary, if:

- the speed of traffic flow changes to 53,5 km/h,
- and the PHT changes by +25 % simultaneously.

April 2020

No.: **12**/2020. Name/Neptun: Netto de Souza Rodrigo/VPOIW7

Traffic Flow Exercise 2

Application of speed-flow relationship

Determine the capacity of a road segment (without intersections) and scale (plan) the required capacity (supply) which fits to the traffic (demand).

1) Determine the capacity (VPHPL, q) of a single lane (and its c_s =80 % spare-value) as a dependent of speed (velocity, v) in a range of 0-120 km/h with intervals of 5-5 km/h. Afterwards calculate the maximum flow (capacity, q_{max}) and the optimal speed (v_{opt}) considering the following average paramameter values (g = 9,81 m/s²):

I_{veh}	=	5,5	[m] vehicle length
ls	=	0,6	[m] safety dinstance
tr	=	1	[s] reaction time
φ	=	0,67	[-] friction factor
qs	=	2,7	[%] slope (+ is uphill, - is downhill)
α	=	0,5	[-] representing reduced distance headways

The results of the calculations should be presented in a table as well as in a chart.

2) Scale (plan) the required number of lanes (considering spare capacity as well, c_s) by the use of previuosly determined flow-speed relationship. The traffic volume (demand) can be seen in the following chart. Afterwards calculate the capacity utilisation (CU).

The average daily traffic volume (VPD) of the peak cross-section is the following:

Vehicle category	Veh/day	PCE*	PCE/day
passenger car	14056	1,0	
light truck	1903	1,4	
heavy truck	776	1,8	
trailer truck	230	2,5	
non-articulated bus	161	1,8	
articulated bus	90	2,5	
motorcycle	300	0,7	

* Passenger car equivalent (PCE).

- the peak hour traffic (PHT) is 10,6 % (ω) of average daily traffic volume (VPD),
- when peak hour traffic (as the basis of planning) occures on the road the average spacemean speed (v_s , speed of traffic flow) is 61,6 km/h,
- the relation between the number of lanes and the aggregate capacity is the following:

Number of lanes	Aggregate capacity (c _a)
1	100 %
2	175 %
3	250 %

3) Examine whether changing (increasing/decreasing) number of lanes is neccessary, if:

- the speed of traffic flow changes to 56,2 km/h,
- and the PHT changes by -9,6 % simultaneously.

April 2020

No.: **13**/2020.

Name/Neptun: Pessoa Pacheco André/WV3WPQ

Traffic Flow Exercise 2

Application of speed-flow relationship

Determine the capacity of a road segment (without intersections) and scale (plan) the required capacity (supply) which fits to the traffic (demand).

1) Determine the capacity (VPHPL, q) of a single lane (and its $c_s=80$ % spare-value) as a dependent of speed (velocity, v) in a range of 0-120 km/h with intervals of 5-5 km/h. Afterwards calculate the maximum flow (capacity, q_{max}) and the optimal speed (v_{opt}) considering the following average paramameter values (g = 9,81 m/s²):

I_{veh}	=	6,4	[m] vehicle length
ls	=	0,6	[m] safety dinstance
tr	=	1,2	[s] reaction time
φ	=	0,81	[-] friction factor
qs	=	-1,3	[%] slope (+ is uphill, - is downhill)
α	=	0,6	[-] representing reduced distance headways

The results of the calculations should be presented in a table as well as in a chart.

2) Scale (plan) the required number of lanes (considering spare capacity as well, c_s) by the use of previuosly determined flow-speed relationship. The traffic volume (demand) can be seen in the following chart. Afterwards calculate the capacity utilisation (CU).

The average daily traffic volume (VPD) of the peak cross-section is the following:

Vehicle category	Veh/day	PCE*	PCE/day
passenger car	7802	1,0	
light truck	2951	1,4	
heavy truck	1550	1,8	
trailer truck	126	2,5	
non-articulated bus	428	1,8	
articulated bus	62	2,5	
motorcycle	226	0,7	

* Passenger car equivalent (PCE).

- the peak hour traffic (PHT) is 9,7 % (ω) of average daily traffic volume (VPD),
- when peak hour traffic (as the basis of planning) occures on the road the average spacemean speed (v_s , speed of traffic flow) is 62,4 km/h,
- the relation between the number of lanes and the aggregate capacity is the following:

Number of lanes	Aggregate capacity (c _a)		
1	100 %		
2	175 %		
3	250 %		

3) Examine whether changing (increasing/decreasing) number of lanes is neccessary, if:

- the speed of traffic flow changes to 56,2 km/h,
- and the PHT changes by -2,8 % simultaneously.