No.: 1/2020.

Traffic Flow Exercise 2

Application of speed-flow relationship

Determine the capacity of a road segment (without intersections) and scale (plan) the required capacity (supply) which fits to the traffic (demand).

1) Determine the capacity (VPHPL, q) of a single lane (and its $\mathrm{c}_{\mathrm{s}}=80 \%$ spare-value) as a dependent of speed (velocity, v) in a range of $0-120 \mathrm{~km} / \mathrm{h}$ with intervals of $5-5 \mathrm{~km} / \mathrm{h}$. Afterwards calculate the maximum flow (capacity, $q_{\text {max }}$) and the optimal speed ($\mathrm{v}_{\text {opt }}$) considering the following average paramameter values ($\mathrm{g}=9,81 \mathrm{~m} / \mathrm{s}^{2}$):

$I_{\text {veh }}$	$=$	6,2	$[\mathrm{~m}]$ vehicle length
I_{s}	$=$	0,6	$[\mathrm{~m}]$ safety dinstance
t_{r}	$=$	1,2	$[\mathrm{~s}]$ reaction time
φ	$=$	0,65	$[-]$ friction factor
q_{s}	$=$	$-0,2$	$[\%]$ slope $(+$ is uphill, - is downhill)
α	$=$	0,5	$[-]$ representing reduced distance headways

The results of the calculations should be presented in a table as well as in a chart.
2) Scale (plan) the required number of lanes (considering spare capacity as well, c_{s}) by the use of previuosly determined flow-speed relationship. The traffic volume (demand) can be seen in the following chart. Afterwards calculate the capacity utilisation (CU).

The average daily traffic volume (VPD) of the peak cross-section is the following:

Vehicle category	Veh/day	PCE*	PCE/day
passenger car	7365	1,0	
light truck	1512	1,4	
heavy truck	1171	1,8	
trailer truck	60	2,5	
non-articulated bus	261	1,8	
articulated bus	170	2,5	
motorcycle	140	0,7	

* Passenger car equivalent (PCE).
- the peak hour traffic (PHT) is $11 \%(\omega)$ of average daily traffic volume (VPD),
- when peak hour traffic (as the basis of planning) occures on the road the average spacemean speed (v_{s}, speed of traffic flow) is $39,6 \mathrm{~km} / \mathrm{h}$,
- the relation between the number of lanes and the aggregate capacity is the following:

Number of lanes	Aggregate capacity $\left(\mathrm{c}_{\mathrm{a}}\right)$
1	100%
2	175%
3	250%

3) Examine whether changing (increasing/decreasing) number of lanes is neccessary, if:

- the speed of traffic flow changes to $37,9 \mathrm{~km} / \mathrm{h}$,
- and the PHT changes by - $4,8 \%$ simultaneously.

If so calculate the new capacity utilisation as well.

Traffic Flow Exercise 2

Application of speed-flow relationship

Determine the capacity of a road segment (without intersections) and scale (plan) the required capacity (supply) which fits to the traffic (demand).

1) Determine the capacity (VPHPL, q) of a single lane (and its $\mathrm{c}_{\mathrm{s}}=80 \%$ spare-value) as a dependent of speed (velocity, v) in a range of $0-120 \mathrm{~km} / \mathrm{h}$ with intervals of $5-5 \mathrm{~km} / \mathrm{h}$. Afterwards calculate the maximum flow (capacity, $q_{\text {max }}$) and the optimal speed ($\mathrm{v}_{\mathrm{opt}}$) considering the following average paramameter values ($g=9,81 \mathrm{~m} / \mathrm{s}^{2}$):

$\mathrm{I}_{\text {veh }}$	$=$	5,4	$[\mathrm{~m}]$ vehicle length
I_{s}	$=$	0,5	$[\mathrm{~m}]$ safety dinstance
t_{r}	$=$	1,1	$[\mathrm{~s}]$ reaction time
φ	$=$	0,78	$[-]$ friction factor
q_{s}	$=$	$-2,7$	$[\%]$ slope $(+$ is uphill, - is downhill)
α	$=$	0,5	$[-]$ representing reduced distance headways

The results of the calculations should be presented in a table as well as in a chart.
2) Scale (plan) the required number of lanes (considering spare capacity as well, c_{s}) by the use of previuosly determined flow-speed relationship. The traffic volume (demand) can be seen in the following chart. Afterwards calculate the capacity utilisation (CU).

The average daily traffic volume (VPD) of the peak cross-section is the following:

Vehicle category	Veh/day	PCE *	PCE/day
passenger car	6722	1,0	
light truck	2444	1,4	
heavy truck	817	1,8	
trailer truck	235	2,5	
non-articulated bus	255	1,8	
articulated bus	162	2,5	
motorcycle	64	0,7	

* Passenger car equivalent (PCE).
- the peak hour traffic (PHT) is $9,1 \%(\omega)$ of average daily traffic volume (VPD),
- when peak hour traffic (as the basis of planning) occures on the road the average spacemean speed (v_{s}, speed of traffic flow) is $38,7 \mathrm{~km} / \mathrm{h}$,
- the relation between the number of lanes and the aggregate capacity is the following:

Number of lanes	Aggregate capacity (c_{a})
1	100%
2	175%
3	250%

3) Examine whether changing (increasing/decreasing) number of lanes is neccessary, if:

- the speed of traffic flow changes to $32,5 \mathrm{~km} / \mathrm{h}$,
- and the PHT changes by $-8,3 \%$ simultaneously.

If so calculate the new capacity utilisation as well.

Traffic Flow Exercise 2

Application of speed-flow relationship

Determine the capacity of a road segment (without intersections) and scale (plan) the required capacity (supply) which fits to the traffic (demand).

1) Determine the capacity (VPHPL, q) of a single lane (and its $c_{s}=80 \%$ spare-value) as a dependent of speed (velocity, v) in a range of $\mathbf{0 - 1 2 0} \mathbf{~ k m} / \mathrm{h}$ with intervals of $\mathbf{5 - 5} \mathbf{~ k m} / \mathrm{h}$. Afterwards calculate the maximum flow (capacity, $q_{\max }$) and the optimal speed ($\mathrm{v}_{\mathrm{opt}}$) considering the following average paramameter values ($g=9,81 \mathrm{~m} / \mathrm{s}^{2}$):

$\mathrm{I}_{\text {veh }}$	$=$	6	$[\mathrm{~m}]$ vehicle length
I_{s}	$=$	0,6	$[\mathrm{~m}]$ safety dinstance
t_{r}	$=$	1,1	$[\mathrm{~s}]$ reaction time
φ	$=$	0,59	$[-]$ friction factor
q_{s}	$=$	$-1,3$	$[\%]$ slope (+ is uphill, - is downhill)
α	$=$	0,5	$[-]$ representing reduced distance headways

The results of the calculations should be presented in a table as well as in a chart.
2) Scale (plan) the required number of lanes (considering spare capacity as well, c_{s}) by the use of previuosly determined flow-speed relationship. The traffic volume (demand) can be seen in the following chart. Afterwards calculate the capacity utilisation (CU).

The average daily traffic volume (VPD) of the peak cross-section is the following:

Vehicle category	Veh/day	PCE*	PCE/day
passenger car	12453	1,0	
light truck	1341	1,4	
heavy truck	1700	1,8	
trailer truck	78	2,5	
non-articulated bus	106	1,8	
articulated bus	62	2,5	
motorcycle	145	0,7	

* Passenger car equivalent (PCE).
- the peak hour traffic (PHT) is $12 \%(\omega)$ of average daily traffic volume (VPD),
- when peak hour traffic (as the basis of planning) occures on the road the average spacemean speed (v_{s}, speed of traffic flow) is $42,3 \mathrm{~km} / \mathrm{h}$,
- the relation between the number of lanes and the aggregate capacity is the following:

Number of lanes	Aggregate capacity (ca)
1	100%
2	175%
3	250%

3) Examine whether changing (increasing/decreasing) number of lanes is neccessary, if:

- the speed of traffic flow changes to $35,8 \mathrm{~km} / \mathrm{h}$,
- and the PHT changes by -10,6 \% simultaneously.

If so calculate the new capacity utilisation as well.

Traffic Flow Exercise 2

Application of speed-flow relationship

Determine the capacity of a road segment (without intersections) and scale (plan) the required capacity (supply) which fits to the traffic (demand).

1) Determine the capacity (VPHPL, q) of a single lane (and its $c_{s}=80 \%$ spare-value) as a dependent of speed (velocity, v) in a range of $\mathbf{0 - 1 2 0} \mathbf{~ k m} / \mathrm{h}$ with intervals of $\mathbf{5 - 5} \mathbf{~ k m} / \mathrm{h}$. Afterwards calculate the maximum flow (capacity, $q_{\max }$) and the optimal speed ($\mathrm{v}_{\mathrm{opt}}$) considering the following average paramameter values ($g=9,81 \mathrm{~m} / \mathrm{s}^{2}$):

$\mathrm{I}_{\text {veh }}$	$=$	6,4	$[\mathrm{~m}]$ vehicle length
I_{s}	$=$	0,5	$[\mathrm{~m}]$ safety dinstance
t_{r}	$=$	1,1	$[\mathrm{~s}]$ reaction time
φ	$=$	0,77	$[-]$ friction factor
q_{s}	$=$	1,1	$[\%]$ slope (+ is uphill, - is downhill)
α	$=$	0,6	$[-]$ representing reduced distance headways

The results of the calculations should be presented in a table as well as in a chart.
2) Scale (plan) the required number of lanes (considering spare capacity as well, c_{s}) by the use of previuosly determined flow-speed relationship. The traffic volume (demand) can be seen in the following chart. Afterwards calculate the capacity utilisation (CU).

The average daily traffic volume (VPD) of the peak cross-section is the following:

Vehicle category	Veh/day	PCE*	PCE/day
passenger car	7611	1,0	
light truck	1444	1,4	
heavy truck	1611	1,8	
trailer truck	123	2,5	
non-articulated bus	339	1,8	
articulated bus	115	2,5	
motorcycle	85	0,7	

* Passenger car equivalent (PCE).
- the peak hour traffic (PHT) is 9,9 \% (ω) of average daily traffic volume (VPD),
- when peak hour traffic (as the basis of planning) occures on the road the average spacemean speed (v_{s}, speed of traffic flow) is $57,4 \mathrm{~km} / \mathrm{h}$,
- the relation between the number of lanes and the aggregate capacity is the following:

Number of lanes	Aggregate capacity (c_{a})
1	100%
2	175%
3	250%

3) Examine whether changing (increasing/decreasing) number of lanes is neccessary, if:

- the speed of traffic flow changes to $56,3 \mathrm{~km} / \mathrm{h}$,
- and the PHT changes by $+21,8 \%$ simultaneously.

If so calculate the new capacity utilisation as well.

Traffic Flow Exercise 2

Application of speed-flow relationship

Determine the capacity of a road segment (without intersections) and scale (plan) the required capacity (supply) which fits to the traffic (demand).

1) Determine the capacity (VPHPL, q) of a single lane (and its $\mathrm{c}_{\mathrm{s}}=80 \%$ spare-value) as a dependent of speed (velocity, v) in a range of $0-120 \mathrm{~km} / \mathrm{h}$ with intervals of $5-5 \mathrm{~km} / \mathrm{h}$. Afterwards calculate the maximum flow (capacity, $q_{\text {max }}$) and the optimal speed ($\mathrm{v}_{\mathrm{opt}}$) considering the following average paramameter values ($g=9,81 \mathrm{~m} / \mathrm{s}^{2}$):

$\mathrm{I}_{\text {veh }}$	$=$	5,6	$[\mathrm{~m}]$ vehicle length
I_{s}	$=$	0,7	$[\mathrm{~m}]$ safety dinstance
t_{r}	$=$	1	$[\mathrm{~s}]$ reaction time
φ	$=$	0,57	$[-]$ friction factor
q_{s}	$=$	$-1,1$	$[\%]$ slope $(+$ is uphill, - is downhill)
α	$=$	0,6	$[-]$ representing reduced distance headways

The results of the calculations should be presented in a table as well as in a chart.
2) Scale (plan) the required number of lanes (considering spare capacity as well, c_{s}) by the use of previuosly determined flow-speed relationship. The traffic volume (demand) can be seen in the following chart. Afterwards calculate the capacity utilisation (CU).

The average daily traffic volume (VPD) of the peak cross-section is the following:

Vehicle category	Veh/day	PCE *	PCE/day
passenger car	7365	1,0	
light truck	2023	1,4	
heavy truck	1171	1,8	
trailer truck	79	2,5	
non-articulated bus	295	1,8	
articulated bus	29	2,5	
motorcycle	178	0,7	

* Passenger car equivalent (PCE).
- the peak hour traffic (PHT) is $10,8 \%(\omega)$ of average daily traffic volume (VPD),
- when peak hour traffic (as the basis of planning) occures on the road the average spacemean speed (v_{s}, speed of traffic flow) is $40,9 \mathrm{~km} / \mathrm{h}$,
- the relation between the number of lanes and the aggregate capacity is the following:

Number of lanes	Aggregate capacity (c_{a})
1	100%
2	175%
3	250%

3) Examine whether changing (increasing/decreasing) number of lanes is neccessary, if:

- the speed of traffic flow changes to $39,3 \mathrm{~km} / \mathrm{h}$,
- and the PHT changes by $+16,1 \%$ simultaneously.

If so calculate the new capacity utilisation as well.

Traffic Flow Exercise 2

Application of speed-flow relationship

Determine the capacity of a road segment (without intersections) and scale (plan) the required capacity (supply) which fits to the traffic (demand).

1) Determine the capacity (VPHPL, q) of a single lane (and its $c_{s}=80 \%$ spare-value) as a dependent of speed (velocity, v) in a range of $\mathbf{0 - 1 2 0} \mathbf{~ k m} / \mathrm{h}$ with intervals of $\mathbf{5 - 5} \mathbf{~ k m} / \mathrm{h}$. Afterwards calculate the maximum flow (capacity, $q_{\max }$) and the optimal speed ($\mathrm{v}_{\mathrm{opt}}$) considering the following average paramameter values ($\mathrm{g}=9,81 \mathrm{~m} / \mathrm{s}^{2}$):

$\mathrm{I}_{\text {veh }}$	$=$	6,3	$[\mathrm{~m}]$ vehicle length
I_{s}	$=$	0,7	$[\mathrm{~m}]$ safety dinstance
t_{r}	$=$	1	$[\mathrm{~s}]$ reaction time
φ	$=$	0,63	$[-]$ friction factor
q_{s}	$=$	2,7	$[\%]$ slope (+ is uphill, - is downhill)
α	$=$	0,5	$[-]$ representing reduced distance headways

The results of the calculations should be presented in a table as well as in a chart.
2) Scale (plan) the required number of lanes (considering spare capacity as well, c_{s}) by the use of previuosly determined flow-speed relationship. The traffic volume (demand) can be seen in the following chart. Afterwards calculate the capacity utilisation (CU).

The average daily traffic volume (VPD) of the peak cross-section is the following:

Vehicle category	Veh/day	PCE *	PCE/day
passenger car	14056	1,0	
light truck	2222	1,4	
heavy truck	1539	1,8	
trailer truck	279	2,5	
non-articulated bus	428	1,8	
articulated bus	120	2,5	
motorcycle	231	0,7	

* Passenger car equivalent (PCE).
- the peak hour traffic (PHT) is $12,7 \%(\omega)$ of average daily traffic volume (VPD),
- when peak hour traffic (as the basis of planning) occures on the road the average spacemean speed (v_{s}, speed of traffic flow) is $59 \mathrm{~km} / \mathrm{h}$,
- the relation between the number of lanes and the aggregate capacity is the following:

Number of lanes	Aggregate capacity (ca)
1	100%
2	175%
3	250%

3) Examine whether changing (increasing/decreasing) number of lanes is neccessary, if:

- the speed of traffic flow changes to $59,7 \mathrm{~km} / \mathrm{h}$,
- and the PHT changes by -2 \% simultaneously.

If so calculate the new capacity utilisation as well.

No.: 7/2020. Name/Neptun: Matalqah Issa Mamoun Saleh/F1R6LA

Traffic Flow Exercise 2

Application of speed-flow relationship

Determine the capacity of a road segment (without intersections) and scale (plan) the required capacity (supply) which fits to the traffic (demand).

1) Determine the capacity (VPHPL, q) of a single lane (and its $c_{s}=80 \%$ spare-value) as a dependent of speed (velocity, v) in a range of $\mathbf{0 - 1 2 0} \mathbf{~ k m} / \mathrm{h}$ with intervals of $\mathbf{5 - 5} \mathbf{~ k m} / \mathrm{h}$. Afterwards calculate the maximum flow (capacity, $q_{\max }$) and the optimal speed ($\mathrm{v}_{\mathrm{opt}}$) considering the following average paramameter values ($\mathrm{g}=9,81 \mathrm{~m} / \mathrm{s}^{2}$):

$\mathrm{I}_{\text {veh }}$	$=$	6,3	$[\mathrm{~m}]$ vehicle length
I_{s}	$=$	0,7	$[\mathrm{~m}]$ safety dinstance
t_{r}	$=$	1	$[\mathrm{~s}]$ reaction time
φ	$=$	0,69	$[-]$ friction factor
q_{s}	$=$	$-0,4$	$[\%]$ slope (+ is uphill, - is downhill)
α	$=$	0,5	$[-]$ representing reduced distance headways

The results of the calculations should be presented in a table as well as in a chart.
2) Scale (plan) the required number of lanes (considering spare capacity as well, c_{s}) by the use of previuosly determined flow-speed relationship. The traffic volume (demand) can be seen in the following chart. Afterwards calculate the capacity utilisation (CU).

The average daily traffic volume (VPD) of the peak cross-section is the following:

Vehicle category	Veh/day	PCE*	PCE/day
passenger car	9389	1,0	
light truck	2889	1,4	
heavy truck	1503	1,8	
trailer truck	78	2,5	
non-articulated bus	428	1,8	
articulated bus	135	2,5	
motorcycle	78	0,7	

* Passenger car equivalent (PCE).
- the peak hour traffic (PHT) is $12,2 \%(\omega)$ of average daily traffic volume (VPD),
- when peak hour traffic (as the basis of planning) occures on the road the average spacemean speed (v_{s}, speed of traffic flow) is $63 \mathrm{~km} / \mathrm{h}$,
- the relation between the number of lanes and the aggregate capacity is the following:

Number of lanes	Aggregate capacity (ca)
1	100%
2	175%
3	250%

3) Examine whether changing (increasing/decreasing) number of lanes is neccessary, if:

- the speed of traffic flow changes to $62,4 \mathrm{~km} / \mathrm{h}$,
- and the PHT changes by $+5,5 \%$ simultaneously.

If so calculate the new capacity utilisation as well.

No.: 8/2020. Name/Neptun: Alatawneh Anas Abdullah Ahmad/H6ATDS

Traffic Flow Exercise 2

Application of speed-flow relationship

Determine the capacity of a road segment (without intersections) and scale (plan) the required capacity (supply) which fits to the traffic (demand).

1) Determine the capacity (VPHPL, q) of a single lane (and its $c_{s}=80 \%$ spare-value) as a dependent of speed (velocity, v) in a range of $\mathbf{0 - 1 2 0} \mathbf{~ k m} / \mathrm{h}$ with intervals of $\mathbf{5 - 5} \mathbf{~ k m} / \mathbf{h}$. Afterwards calculate the maximum flow (capacity, $q_{\max }$) and the optimal speed ($\mathrm{v}_{\mathrm{opt}}$) considering the following average paramameter values ($g=9,81 \mathrm{~m} / \mathrm{s}^{2}$):

$\mathrm{I}_{\text {veh }}$	$=$	6,3	$[\mathrm{~m}]$ vehicle length
I_{s}	$=$	0,6	$[\mathrm{~m}]$ safety dinstance
t_{r}	$=$	1,2	$[\mathrm{~s}]$ reaction time
φ	$=$	0,62	$[-]$ friction factor
q_{s}	$=$	$-1,9$	$[\%]$ slope (+ is uphill, - is downhill)
α	$=$	0,5	$[-]$ representing reduced distance headways

The results of the calculations should be presented in a table as well as in a chart.
2) Scale (plan) the required number of lanes (considering spare capacity as well, c_{s}) by the use of previuosly determined flow-speed relationship. The traffic volume (demand) can be seen in the following chart. Afterwards calculate the capacity utilisation (CU).

The average daily traffic volume (VPD) of the peak cross-section is the following:

Vehicle category	Veh/day	PCE *	PCE/day
passenger car	13468	1,0	
light truck	1541	1,4	
heavy truck	1567	1,8	
trailer truck	129	2,5	
non-articulated bus	348	1,8	
articulated bus	67	2,5	
motorcycle	252	0,7	

* Passenger car equivalent (PCE).
- the peak hour traffic (PHT) is 10,6 \% (ω) of average daily traffic volume (VPD),
- when peak hour traffic (as the basis of planning) occures on the road the average spacemean speed (v_{s}, speed of traffic flow) is $60,9 \mathrm{~km} / \mathrm{h}$,
- the relation between the number of lanes and the aggregate capacity is the following:

Number of lanes	Aggregate capacity (ca)
1	100%
2	175%
3	250%

3) Examine whether changing (increasing/decreasing) number of lanes is neccessary, if:

- the speed of traffic flow changes to $59,7 \mathrm{~km} / \mathrm{h}$,
- and the PHT changes by -7,2 \% simultaneously.

If so calculate the new capacity utilisation as well.

Traffic Flow Exercise 2

Application of speed-flow relationship

Determine the capacity of a road segment (without intersections) and scale (plan) the required capacity (supply) which fits to the traffic (demand).

1) Determine the capacity (VPHPL, q) of a single lane (and its $c_{s}=80 \%$ spare-value) as a dependent of speed (velocity, v) in a range of $\mathbf{0 - 1 2 0} \mathbf{~ k m} / \mathrm{h}$ with intervals of $\mathbf{5 - 5} \mathbf{~ k m} / \mathrm{h}$. Afterwards calculate the maximum flow (capacity, $q_{\max }$) and the optimal speed ($\mathrm{v}_{\mathrm{opt}}$) considering the following average paramameter values ($\mathrm{g}=9,81 \mathrm{~m} / \mathrm{s}^{2}$):

$\mathrm{I}_{\text {veh }}$	$=$	6,2	$[\mathrm{~m}]$ vehicle length
I_{s}	$=$	0,6	$[\mathrm{~m}]$ safety dinstance
t_{r}	$=$	1	$[\mathrm{~s}]$ reaction time
φ	$=$	0,69	$[-]$ friction factor
q_{s}	$=$	$-2,3$	$[\%]$ slope (+ is uphill, - is downhill)
α	$=$	0,5	$[-]$ representing reduced distance headways

The results of the calculations should be presented in a table as well as in a chart.
2) Scale (plan) the required number of lanes (considering spare capacity as well, c_{s}) by the use of previuosly determined flow-speed relationship. The traffic volume (demand) can be seen in the following chart. Afterwards calculate the capacity utilisation (CU).

The average daily traffic volume (VPD) of the peak cross-section is the following:

Vehicle category	Veh/day	PCE*	PCE/day
passenger car	13833	1,0	
light truck	1056	1,4	
heavy truck	1756	1,8	
trailer truck	293	2,5	
non-articulated bus	439	1,8	
articulated bus	138	2,5	
motorcycle	145	0,7	

* Passenger car equivalent (PCE).
- the peak hour traffic (PHT) is $11 \%(\omega)$ of average daily traffic volume (VPD),
- when peak hour traffic (as the basis of planning) occures on the road the average spacemean speed (v_{s}, speed of traffic flow) is $51,4 \mathrm{~km} / \mathrm{h}$,
- the relation between the number of lanes and the aggregate capacity is the following:

Number of lanes	Aggregate capacity (c_{a})
1	100%
2	175%
3	250%

3) Examine whether changing (increasing/decreasing) number of lanes is neccessary, if:

- the speed of traffic flow changes to $47,1 \mathrm{~km} / \mathrm{h}$,
- and the PHT changes by $-6,1 \%$ simultaneously.

If so calculate the new capacity utilisation as well.

No.: 10/2020. Name/Neptun: Lopez Lizarraga Julio Cesar/LPMZKT

Traffic Flow Exercise 2

Application of speed-flow relationship

Determine the capacity of a road segment (without intersections) and scale (plan) the required capacity (supply) which fits to the traffic (demand).

1) Determine the capacity (VPHPL, q) of a single lane (and its $c_{s}=80 \%$ spare-value) as a dependent of speed (velocity, v) in a range of $\mathbf{0 - 1 2 0} \mathbf{~ k m} / \mathrm{h}$ with intervals of $\mathbf{5 - 5} \mathbf{~ k m} / \mathrm{h}$. Afterwards calculate the maximum flow (capacity, $q_{\max }$) and the optimal speed ($\mathrm{v}_{\mathrm{opt}}$) considering the following average paramameter values ($g=9,81 \mathrm{~m} / \mathrm{s}^{2}$):

$\mathrm{I}_{\text {veh }}$	$=$	6,5	$[\mathrm{~m}]$ vehicle length
I_{s}	$=$	0,6	$[\mathrm{~m}]$ safety dinstance
t_{r}	$=$	0,9	$[\mathrm{~s}]$ reaction time
φ	$=$	0,72	$[-]$ friction factor
q_{s}	$=$	$-0,1$	$[\%]$ slope (+ is uphill, - is downhill)
α	$=$	0,5	$[-]$ representing reduced distance headways

The results of the calculations should be presented in a table as well as in a chart.
2) Scale (plan) the required number of lanes (considering spare capacity as well, c_{s}) by the use of previuosly determined flow-speed relationship. The traffic volume (demand) can be seen in the following chart. Afterwards calculate the capacity utilisation (CU).

The average daily traffic volume (VPD) of the peak cross-section is the following:

Vehicle category	Veh/day	PCE*	PCE/day
passenger car	8174	1,0	
light truck	1439	1,4	
heavy truck	800	1,8	
trailer truck	265	2,5	
non-articulated bus	439	1,8	
articulated bus	125	2,5	
motorcycle	64	0,7	

* Passenger car equivalent (PCE).
- the peak hour traffic (PHT) is $11,4 \%(\omega)$ of average daily traffic volume (VPD),
- when peak hour traffic (as the basis of planning) occures on the road the average spacemean speed (v_{s}, speed of traffic flow) is $50,9 \mathrm{~km} / \mathrm{h}$,
- the relation between the number of lanes and the aggregate capacity is the following:

Number of lanes	Aggregate capacity (ca)
1	100%
2	175%
3	250%

3) Examine whether changing (increasing/decreasing) number of lanes is neccessary, if:

- the speed of traffic flow changes to $50 \mathrm{~km} / \mathrm{h}$,
- and the PHT changes by $-6,6 \%$ simultaneously.

If so calculate the new capacity utilisation as well.

No.: 11/2020. Name/Neptun: AI Qadri Yahya/R59DCB

Traffic Flow Exercise 2

Application of speed-flow relationship

Determine the capacity of a road segment (without intersections) and scale (plan) the required capacity (supply) which fits to the traffic (demand).

1) Determine the capacity (VPHPL, q) of a single lane (and its $c_{s}=80 \%$ spare-value) as a dependent of speed (velocity, v) in a range of $\mathbf{0 - 1 2 0} \mathbf{~ k m} / \mathrm{h}$ with intervals of $\mathbf{5 - 5} \mathbf{~ k m} / \mathrm{h}$. Afterwards calculate the maximum flow (capacity, $q_{\max }$) and the optimal speed ($\mathrm{v}_{\mathrm{opt}}$) considering the following average paramameter values ($g=9,81 \mathrm{~m} / \mathrm{s}^{2}$):

$\mathrm{I}_{\text {veh }}$	$=$	6,1	$[\mathrm{~m}]$ vehicle length
I_{s}	$=$	0,6	$[\mathrm{~m}]$ safety dinstance
t_{r}	$=$	1	$[\mathrm{~s}]$ reaction time
φ	$=$	0,66	$[-]$ friction factor
q_{s}	$=$	0,9	$[\%]$ slope (+ is uphill, - is downhill)
α	$=$	0,6	$[-]$ representing reduced distance headways

The results of the calculations should be presented in a table as well as in a chart.
2) Scale (plan) the required number of lanes (considering spare capacity as well, c_{s}) by the use of previuosly determined flow-speed relationship. The traffic volume (demand) can be seen in the following chart. Afterwards calculate the capacity utilisation (CU).

The average daily traffic volume (VPD) of the peak cross-section is the following:

Vehicle category	Veh/day	PCE*	PCE/day
passenger car	8722	1,0	
light truck	3000	1,4	
heavy truck	925	1,8	
trailer truck	119	2,5	
non-articulated bus	158	1,8	
articulated bus	73	2,5	
motorcycle	148	0,7	

* Passenger car equivalent (PCE).
- the peak hour traffic (PHT) is $11,8 \%(\omega)$ of average daily traffic volume (VPD),
- when peak hour traffic (as the basis of planning) occures on the road the average spacemean speed (v_{s}, speed of traffic flow) is $54,7 \mathrm{~km} / \mathrm{h}$,
- the relation between the number of lanes and the aggregate capacity is the following:

Number of lanes	Aggregate capacity (ca)
1	100%
2	175%
3	250%

3) Examine whether changing (increasing/decreasing) number of lanes is neccessary, if:

- the speed of traffic flow changes to $53,5 \mathrm{~km} / \mathrm{h}$,
- and the PHT changes by +25 \% simultaneously.

If so calculate the new capacity utilisation as well.

No.: 12/2020. Name/Neptun: Netto de Souza Rodrigo/VPOIW7

Traffic Flow Exercise 2

Application of speed-flow relationship

Determine the capacity of a road segment (without intersections) and scale (plan) the required capacity (supply) which fits to the traffic (demand).

1) Determine the capacity (VPHPL, q) of a single lane (and its $c_{s}=80 \%$ spare-value) as a dependent of speed (velocity, v) in a range of $\mathbf{0 - 1 2 0} \mathbf{~ k m} / \mathrm{h}$ with intervals of $\mathbf{5 - 5} \mathbf{~ k m} / \mathbf{h}$. Afterwards calculate the maximum flow (capacity, $q_{\max }$) and the optimal speed ($\mathrm{v}_{\mathrm{opt}}$) considering the following average paramameter values ($\mathrm{g}=9,81 \mathrm{~m} / \mathrm{s}^{2}$):

$I_{\text {veh }}$	$=$	5,5	$[\mathrm{~m}]$ vehicle length
I_{s}	$=$	0,6	$[\mathrm{~m}]$ safety dinstance
t_{r}	$=$	1	$[\mathrm{~s}]$ reaction time
φ	$=$	0,67	$[-]$ friction factor
q_{s}	$=$	2,7	$[\%]$ slope (+ is uphill, - is downhill)
α	$=$	0,5	$[-]$ representing reduced distance headways

The results of the calculations should be presented in a table as well as in a chart.
2) Scale (plan) the required number of lanes (considering spare capacity as well, c_{s}) by the use of previuosly determined flow-speed relationship. The traffic volume (demand) can be seen in the following chart. Afterwards calculate the capacity utilisation (CU).

The average daily traffic volume (VPD) of the peak cross-section is the following:

Vehicle category	Veh/day	PCE*	PCE/day
passenger car	14056	1,0	
light truck	1903	1,4	
heavy truck	776	1,8	
trailer truck	230	2,5	
non-articulated bus	161	1,8	
articulated bus	90	2,5	
motorcycle	300	0,7	

* Passenger car equivalent (PCE).
- the peak hour traffic (PHT) is $10,6 \%(\omega)$ of average daily traffic volume (VPD),
- when peak hour traffic (as the basis of planning) occures on the road the average spacemean speed (v_{s}, speed of traffic flow) is $61,6 \mathrm{~km} / \mathrm{h}$,
- the relation between the number of lanes and the aggregate capacity is the following:

Number of lanes	Aggregate capacity (c_{a})
1	100%
2	175%
3	250%

3) Examine whether changing (increasing/decreasing) number of lanes is neccessary, if:

- the speed of traffic flow changes to $56,2 \mathrm{~km} / \mathrm{h}$,
- and the PHT changes by -9,6 \% simultaneously.

If so calculate the new capacity utilisation as well.

Traffic Flow Exercise 2

Application of speed-flow relationship

Determine the capacity of a road segment (without intersections) and scale (plan) the required capacity (supply) which fits to the traffic (demand).

1) Determine the capacity (VPHPL, q) of a single lane (and its $c_{s}=80 \%$ spare-value) as a dependent of speed (velocity, v) in a range of $\mathbf{0 - 1 2 0} \mathbf{~ k m} / \mathrm{h}$ with intervals of $\mathbf{5 - 5} \mathbf{~ k m} / \mathrm{h}$. Afterwards calculate the maximum flow (capacity, $q_{\max }$) and the optimal speed ($\mathrm{v}_{\mathrm{opt}}$) considering the following average paramameter values ($g=9,81 \mathrm{~m} / \mathrm{s}^{2}$):

$\mathrm{I}_{\text {veh }}$	$=$	6,4	$[\mathrm{~m}]$ vehicle length
I_{s}	$=$	0,6	$[\mathrm{~m}]$ safety dinstance
t_{r}	$=$	1,2	$[\mathrm{~s}]$ reaction time
φ	$=$	0,81	$[-]$ friction factor
q_{s}	$=$	$-1,3$	$[\%]$ slope (+ is uphill, - is downhill)
α	$=$	0,6	$[-]$ representing reduced distance headways

The results of the calculations should be presented in a table as well as in a chart.
2) Scale (plan) the required number of lanes (considering spare capacity as well, c_{s}) by the use of previuosly determined flow-speed relationship. The traffic volume (demand) can be seen in the following chart. Afterwards calculate the capacity utilisation (CU).

The average daily traffic volume (VPD) of the peak cross-section is the following:

Vehicle category	Veh/day	PCE *	PCE/day
passenger car	7802	1,0	
light truck	2951	1,4	
heavy truck	1550	1,8	
trailer truck	126	2,5	
non-articulated bus	428	1,8	
articulated bus	62	2,5	
motorcycle	226	0,7	

* Passenger car equivalent (PCE).
- the peak hour traffic (PHT) is 9,7 \% (ω) of average daily traffic volume (VPD),
- when peak hour traffic (as the basis of planning) occures on the road the average spacemean speed (v_{s}, speed of traffic flow) is $62,4 \mathrm{~km} / \mathrm{h}$,
- the relation between the number of lanes and the aggregate capacity is the following:

Number of lanes	Aggregate capacity (ca)
1	100%
2	175%
3	250%

3) Examine whether changing (increasing/decreasing) number of lanes is neccessary, if:

- the speed of traffic flow changes to $56,2 \mathrm{~km} / \mathrm{h}$,
- and the PHT changes by $-2,8 \%$ simultaneously.

If so calculate the new capacity utilisation as well.

