TRAVELLING SALESMAN PROBLEM

Dr. Tibor SIPOS Ph.D. Dr. Árpád TÖRÖK Ph.D. Zsombor SZABÓ 2019

BME FACULTY OF TRANSPORTATION ENGINEERING AND VEHICLE ENGINEERING 32708-2/2017/INTFIN COURSE MATERIAL SUPPORTED BY EMMI

Introduction

- Main reason to analyse the branch and bound technique is to solve the travelling salesman problem
- The travelling salesman problem (TSP) is one of the most important optimization problems
- The most famous problem for TSP is the Bridges of Königsberg

Problem

- Clay Mathematics Institute Millenium Problems
- Seven most important problems which are unsolved
- *P* = *NP* should be proven or negatived
- TSP is one of the most famous problem which NP solution (exponential timed) is known but the P solution (polinomial timed) is researched
- A US \$1 million prize being awarded by the institute to the discoverer
- http://www.claymath.org/millennium-problems
- http://www.claymath.org/millennium-problems/pvs-np-problem

Description

- In the travelling salesman problem there are n points of interests (for example cities), and the resistance between them
- The task is to plan the shortest route which includes all of the cities for exactly one time

Description

$$\min Z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$
$$\sum_{\substack{j=1\\m}}^{n} x_{ij} = 1 \forall i$$
$$\sum_{\substack{i=1\\m}}^{m} x_{ij} = 1 \forall j$$
$$x_{ij} = \begin{cases} 0 \\ 1 \forall i, j \end{cases}$$

- Note, that there is another constraint which is difficult to formulate
- If the matrix is considered as a graph, then the chosen arcs must give one, and only one circle

Method

- Four steps:
 - Matrix reduction: Each element of each row are reduced by the row's minimum. Then this method is also used for the columns
 - On the zero cells the r values are counted
 - Choose the maximum of the r values
 - Then comes the branch and bound method. There are two possible ways. The chosen element can be eliminated or can be chosen into the route

	А	В	С	D
А	Μ	6	2	4
В	1	Μ	2	7
С	4	8	Μ	5
D	5	2	6	М

Table form

 Note, that the elements in the matrix's main diagonal cannot be chosen, so they are signed by 'M'

Reducted matrix

	Α	В	С	D
A	Μ	4	0	1
В	0	Μ	1	5
С	0	4	Μ	0
D	3	0	4	Μ

r values

• The second step is the calculating of the *r* values for all of the zeros

$$r_{\hat{i}\hat{j}} = \min_{j} c_{\hat{i}j} + \min_{i} c_{i\hat{j}}$$

• With this, the next *r* values are occurred

$$r_{AC} = 1 + 1 = 2$$

 $r_{BA} = 0 + 1 = 1$
 $r_{CA} = 0 + 0 = 0$
 $r_{CD} = 0 + 1 = 1$
 $r_{DB} = 3 + 4 = 7$

Branch and Bound

- The branch and bound method is need an initial bound to solve
- The initial bound for the problem is the sum of the rows' and columns' minimums during the matrix reduction ($Z^* = 10 = k_0$)
- In the branching method there are two branches, choosing or eliminating

Branch and Bound – Eliminating

• The branch's bound will be set

$$k_l = k_{l^-} + r_{ij}$$

• The eliminated cell must be signed by 'M', and then the matrix reduction will be the next step

Branch and Bound – Eliminating

	А	В	С	D
A	Μ	4	0	1
В	0	Μ	1	5
С	0	4	Μ	0
D	3	Μ	4	Μ

Branch and Bound – Choosing in

- If the recent element is chosen for the shortest route, then the cell itself (c_{ij}), the whole row, the whole column and c_{i=j,j=i} need to be set to 0
- The bound will not increase, only if a row or a column occur, where there will not be any zeros
- Because there is a 0 in every row and column, the k will not change

Branch and Bound – Choosing in

	А	В	С	D
Α	Μ	Μ	0	1
В	0	Μ	1	Μ
С	0	Μ	Μ	0
D	Μ	Μ	Μ	Μ

Branch and Bound – Fathoming

- Some special issues are needed
- In these problems the Z^* will not occur, instead of this there is a recent k value
- The unfeasible subproblem is a remaining criteria
- During the fathoming step the subproblem with the lower bound is ought to be chosen

First Step – Enumeration Tree

Second Step – Initial Matrix

	А	В	С	D
A	Μ	Μ	0	1
В	0	Μ	1	Μ
С	0	Μ	Μ	0
D	Μ	Μ	Μ	Μ

Second Step – r values

- No more matrix reduction is needed
- *r* values are ought to be calculated

 $r_{AC} = 1 + 1 = 2$ $r_{BA} = 0 + 1 = 1$ $r_{CA} = 0 + 0 = 0$ $r_{CD} = 0 + 1 = 1$

- AC cell should be used
- L_3 : AC cell is eliminated ($k_3 = 12$)
- L_4 : AC cell is used ($k_4 = 10$)

Second Step – Chosen element

	Α	В	С	D
Α	Μ	Μ	0	1
В	0	Μ	1	Μ
С	0	Μ	Μ	0
D	Μ	Μ	Μ	Μ

Second Step – Eliminating

	A	В	С	D
А	Μ	Μ	Μ	1
В	0	Μ	1	Μ
С	0	Μ	Μ	0
D	Μ	Μ	Μ	Μ

Second Step – Choosing in

	А	В	С	D
A	Μ	Μ	Μ	Μ
В	0	Μ	Μ	Μ
С	Μ	Μ	Μ	0
D	Μ	Μ	Μ	Μ

Second Step – Enumeration Tree

Third Step – Initial Matrix

	Α	В	С	D
A	Μ	Μ	Μ	Μ
В	0	Μ	Μ	Μ
С	Μ	Μ	Μ	0
D	Μ	Μ	Μ	Μ

Third Step – Conclusions

- There are only two feasible cells remained, which are our missing sections
- So the optimal solution is occurred: $D \rightarrow B \rightarrow A \rightarrow C \rightarrow D$
- Because the new actual optimal solution is $k_4 = 10$ then the higher branches should be fathomed

Optimal solution: $D \rightarrow B \rightarrow A \rightarrow C \rightarrow D$

	Α	В	С	D
A	Μ	6	2	4
В	1	Μ	2	7
С	4	8	Μ	5
D	5	2	6	Μ

Optimal solution: $D \rightarrow B \rightarrow A \rightarrow C \rightarrow D$

	A	В	С	D
A	Μ	6	2	4
В	1	Μ	2	7
С	4	8	Μ	5
D	5	2	6	Μ

Optimal solution: $D \rightarrow B \rightarrow A \rightarrow C \rightarrow D$

	A	В	С	D
А	Μ	6	2	4
В	1	Μ	2	7
С	4	8	Μ	5
D	5	2	6	Μ

Optimal solution: $D \rightarrow B \rightarrow A \rightarrow C \rightarrow D$

	A	В	С	D
А	Μ	6	2	4
В	1	Μ	2	7
С	4	8	Μ	5
D	5	2	6	Μ

BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS

Dr. Tibor SIPOS Ph.D. Dr. Árpád TÖRÖK Ph.D. Zsombor SZABÓ

email: szabo.zsombor@mail.bme.hu

BME FACULTY OF TRANSPORTATION ENGINEERING AND VEHICLE ENGINEERING 32708-2/2017/INTFIN COURSE MATERIAL SUPPORTED BY EMMI