TRAVELLING SALESMAN PROBLEM

Dr. Tibor SIPOS Ph.D. Dr. Árpád TÖRÖK Ph.D. Zsombor SZABÓ 2019

BME FACULTY OF TRANSPORTATION ENGINEERING AND VEHICLE ENGINEERING 32708-2/2017/INTFIN COURSE MATERIAL SUPPORTED BY EMMI

Introduction

- Main reason to analyse the branch and bound technique is to solve the travelling salesman problem
- The travelling salesman problem (TSP) is one of the most important optimization problems
- The most famous problem for TSP is the Bridges of Königsberg

Problem

- Clay Mathematics Institute - Millenium Problems
- Seven most important problems which are unsolved
- $P=N P$ should be proven or negatived
- TSP is one of the most famous problem which NP solution (exponential timed) is known but the P solution (polinomial timed) is researched
- A US $\$ 1$ million prize being awarded by the institute to the discoverer
- http://www.claymath.org/millennium-problems
- http://www.claymath.org/millennium-problems/p-vs-np-problem

Description

- In the travelling salesman problem there are n points of interests (for example cities), and the resistance between them
- The task is to plan the shortest route which includes all of the cities for exactly one time

Description

$$
\begin{gathered}
\min Z=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j} \\
\sum_{j=1}^{n} x_{i j}=1 \forall i \\
\sum_{i=1}^{m} x_{i j}=1 \forall j \\
x_{i j}=\left\{\begin{array}{l}
0 \\
1
\end{array} \forall i, j\right.
\end{gathered}
$$

- Note, that there is another constraint which is difficult to formulate
- If the matrix is considered as a graph, then the chosen arcs must give one, and only one circle

Method

- Four steps:
- Matrix reduction: Each element of each row are reduced by the row's minimum. Then this method is also used for the columns
- On the zero cells the r values are counted
- Choose the maximum of the r values
- Then comes the branch and bound method. There are two possible ways. The chosen element can be eliminated or can be chosen into the route

Example

	A	B	C	D
A	M	6	2	4
B	1	M	2	7
C	4	8	M	5
D	5	2	6	M

Table form

- Note, that the elements in the matrix's main diagonal cannot be chosen, so they are signed by ' M '

Reducted matrix

	A	B	C	D
A	M	4	0	1
B	0	M	1	5
C	0	4	M	0
D	3	0	4	M

r values

- The second step is the calculating of the r values for all of the zeros

$$
r_{\hat{\imath} \hat{\jmath}}=\min _{j} c_{\hat{\imath} j}+\min _{i} c_{i \hat{\jmath}}
$$

- With this, the next r values are occurred

$$
\begin{aligned}
& r_{A C}=1+1=2 \\
& r_{B A}=0+1=1 \\
& r_{C A}=0+0=0 \\
& r_{C D}=0+1=1 \\
& r_{D B}=3+4=7
\end{aligned}
$$

Branch and Bound

- The branch and bound method is need an initial bound to solve
- The initial bound for the problem is the sum of the rows' and columns' minimums during the matrix reduction ($Z^{*}=10=k_{0}$)
- In the branching method there are two branches, choosing or eliminating

Branch and Bound - Eliminating

- The branch's bound will be set

$$
k_{l}=k_{l^{-}}+r_{i j}
$$

- The eliminated cell must be signed by ' M ', and then the matrix reduction will be the next step

Branch and Bound - Eliminating

	A	B	C	D
A	M	4	0	1
B	0	M	1	5
C	0	4	M	0
D	3	M	4	M

Branch and Bound - Choosing in

- If the recent element is chosen for the shortest route, then the cell itself ($c_{\hat{l} \hat{\jmath}}$), the whole row, the whole column and $c_{i=\hat{\jmath}, j=\hat{\imath}}$ need to be set to 0
- The bound will not increase, only if a row or a column occur, where there will not be any zeros
- Because there is a 0 in every row and column, the k will not change

Branch and Bound - Choosing in

	A	B	C	D
A	M	M	0	1
B	0	M	1	M
C	0	M	M	0
D	M	M	M	M

Branch and Bound - Fathoming

- Some special issues are needed
- In these problems the Z^{*} will not occur, instead of this there is a recent k value
- The unfeasible subproblem is a remaining criteria
- During the fathoming step the subproblem with the lower bound is ought to be chosen

First Step - Enumeration Tree

Second Step - Initial Matrix

	A	B	C	D
A	M	M	0	1
B	0	M	1	M
C	0	M	M	0
D	M	M	M	M

Second Step - r values

- No more matrix reduction is needed
- r values are ought to be calculated

$$
\begin{aligned}
& r_{A C}=1+1=2 \\
& r_{B A}=0+1=1 \\
& r_{C A}=0+0=0 \\
& r_{C D}=0+1=1
\end{aligned}
$$

- AC cell should be used
- $\mathrm{L}_{3}: \mathrm{AC}$ cell is eliminated $\left(k_{3}=12\right)$
- L_{4} : AC cell is used $\left(k_{4}=10\right)$

Second Step - Chosen element

	A	B	C	D
A	M	M	0	1
B	0	M	1	M
C	0	M	M	0
D	M	M	M	M

Second Step - Eliminating

	A	B	C	D
A	M	M	M	1
B	0	M	1	M
C	0	M	M	0
D	M	M	M	M

Second Step - Choosing in

	A	B	C	D
A	M	M	M	M
B	0	M	M	M
C	M	M	M	0
D	M	M	M	M

Second Step - Enumeration Tree

Third Step - Initial Matrix

	A	B	C	D
A	M	M	M	M
B	0	M	M	M
C	M	M	M	0
D	M	M	M	M

Third Step - Conclusions

- There are only two feasible cells remained, which are our missing sections
- So the optimal solution is occurred:

$$
D \rightarrow B \rightarrow A \rightarrow C \rightarrow D
$$

- Because the new actual optimal solution is $k_{4}=10$ then the higher branches should be fathomed

Optimal solution: $D \rightarrow B \rightarrow A \rightarrow C \rightarrow D$

	A	B	C	D
A	M	6	2	4
B	1	M	2	7
C	4	8	M	5
D	5	2	6	M

Optimal solution: $D \rightarrow B \rightarrow A \rightarrow C \rightarrow D$

	A	B	C	D
A	M	6	2	4
B	1	M	2	7
C	4	8	M	5
D	5	2	6	M

Optimal solution: $D \rightarrow B \rightarrow A \rightarrow C \rightarrow D$

	A	B	C	D
A	M	6	2	4
B	1	M	2	7
C	4	8	M	5
D	5	2	6	M

Optimal solution: $D \rightarrow B \rightarrow A \rightarrow C \rightarrow D$

	A	B	C	D
A	M	6	2	4
B	1	M	2	7
C	4	8	M	5
D	5	2	6	M

BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS

Dr. Tibor SIPOS Ph.D. Dr. Árpád TÖRÖK Ph.D. Zsombor SZABÓ

email: szabo.zsombor@mail.bme.hu

BME FACULTY OF TRANSPORTATION ENGINEERING AND VEHICLE ENGINEERING 32708-2/2017/INTFIN COURSE MATERIAL SUPPORTED BY EMMI

