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• Network: bunch of nodes and arcs

• Node: where the arcs intersect each other

• Arc: the nodes are connected by arcs

• In transportation sciences, the networks often
have some kind of flow on the arcs

• Directed arc: the flow on the arc can be in only
one direction

• Directed network: all of the arcs are directed

Graph theory
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• Path: a bunch of arcs between two nodes
• Undirected path: all of the arcs in the path is 

undirected
• Circle: the path beginning and ending is the same

node
• Connected nodes: there is an undirected path

between the two nodes
• Connected network: all pair of nodes are connected

to each other
• Tree: connected network without cycles
• Spanning tree: all of the nodes are in the tree

Graph theory



5

Content

Minimum Cost Flow Problem

Maximum Flow Problem

Shortest Route Problem

Graph Theory



6

• Goal: find a minimal spanning tree, where there
is a starting point chosen arbitrary, and the other
nodes distances are calculated from this point

• Theorem: a spanning tree with 𝑛 nodes has 
always 𝑛 − 1 arcs

• All of the networks can describe in graph and 
table form also

Dijkstra method
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Dijkstra method

S 10 M 5 M M

D M 6 M M 7

C 3 9 M 2 M

B M M M 4 M

A M 1 2 M M

A B C D S
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• The table has three section
– In the first column there are the chosen nodes, as they have been chosen
– The second section (𝑛 − 1 columns) shows the shortest path from the 

origin node
– The third section, also 𝑛 − 1 columns, show the node before the 

destination node

• This can be made from node-to-node, row-to-row, step-to-step
• When an alternate route become in sight, which is shorter than the

Dijkstra method

9 C A C D

9 C D C D

9 C A C D

S A B D S

C C C

3 4 2CDAB

3 4 2CDA

3 8 2CD

3 9 2C

A B D
route that already picked, 
the new route must be 
used

• The method has always 
𝑛 − 1 steps to solve
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• Consider all of the nodes which can be reached 
from the chosen nodes, and calculate the 
shortest path to them

• If the path’s length is shorter than the already 
counted, then the shorter path’s length must be 
used in the next

Dijkstra method
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A B D S

C 3 9 2 C C C

A B D S

Dijkstra method
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Dijkstra method

C C C

CD 3 8 2 9 C D C D

C 3 9 2

A B D S A B D S
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Dijkstra method

C D C D

CDA 3 4 2 9 C A C D

CD 3 8 2 9

A B D S

C 3 9 2 C C C

A B D S
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Dijkstra method

C A C D

CDAB 3 4 2 9 C A C D

CDA 3 4 2 9

C C C

CD 3 8 2 9 C D C D

C 3 9 2

A B D S A B D S
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• Given a network

• Source: from the flows start

• Sink: flows’ destination

• Task: the most possible flows have been
transported from the source to the sink

Maximum flow problem
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• 𝑛 nodes

• Between the nodes, there are directed or
undirected arcs

• Each of the arcs have an origin (𝑖), and a 
destination (𝑗), where 𝑖, 𝑗 ∈ 1. . 𝑛

• All of the arcs also have a capacity (𝑢𝑖𝑗), and a 

flow (𝑥𝑖𝑗) with a constraint

Ford-Fulkerson method
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• Ford-Fulkerson method has two main steps
– Find an augmenting path

• Augmenting path: bunch of directed arcs, which residual
capacities (𝑢𝑖𝑗 − 𝑥𝑖𝑗) are more than zero

– If an augmenting path is found, then a flow, which is 
equal to the minimum of the remaining capacities, must 
be programmed onto the network

• Example:
– On the network, the source is the node O, and the sink is 

the node T
– All of the arcs have a direction, and a capacity written on

it

Ford-Fulkerson method
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Ford-Fulkerson method
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Ford-Fulkerson method
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Ford-Fulkerson method

• All of the arcs have two numbers

• The first shows the residual capacity, and the
second shows the actual flow on it

• For example, take into consideration the 𝑂 →
𝐵 → 𝐸 → 𝑇 augmenting path
– The minimum residual capacity is the 5 (on the BE 

arc) so it can be programmed on the network

– The programmed flow must be reduce from the
involved arcs first number, and have to add to the
second
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Ford-Fulkerson method: 𝑂 → 𝐵 → 𝐸 → 𝑇
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Ford-Fulkerson method: 𝑂 → 𝐴 → 𝐷 → 𝑇
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Ford-Fulkerson method: 𝑂 → 𝐴 → 𝐵 → 𝐷 → 𝑇
𝑂 → 𝐵 → 𝐷 → 𝑇
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Ford-Fulkerson method: 𝑂 → 𝐶 → 𝐸 → 𝐷 → 𝑇
𝑂 → 𝐶 → 𝐸 → 𝑇
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Ford-Fulkerson method

• Important question is, that how an augmenting
path can be found

• The method is that we start from the source and 
sign all of the nodes where the arc’s first number
(which is closer to the already signed node) is 
more than zero



26

Ford-Fulkerson method
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Ford-Fulkerson method

• Note, that in this case the BE arc’s direction is 
opposite

• Some unit of programmed flow can be 
unprogrammed, and the connecting flows must 
be redirected to other route

• 𝑂 → 𝐶 → 𝐸 → 𝐵 → 𝐷 → 𝑇 route can be found
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Ford-Fulkerson method
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Ford-Fulkerson method
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Ford-Fulkerson method – Optimality test

• Finding an augmenting path can be difficult in huge
networks

• Optimality test: max-flow min-cut theorem

• Cut: any set of directed arcs containing at least one arc 
from every directed path from the source to the sink

• Cut value: the sum of the arc capacities of the arcs (in the
specified direction) of the cut

• Theorem: max-flow min-cut: for any network with a single
source and sink, the maximum feasible flow from the
source to the sink equals the minimum cut value for all
cuts of the network
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Ford-Fulkerson method – Optimality test
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• The minimum cost flow problem holds a central
position among network optimization models, 
both because it encompasses such a broad class
of applications and because it can be solved
extremely efficiently

• All of the previously shown problems are 
special cases of this problem

Minimum cost flow problem
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• Have to set up two matrices
– 𝑿: contains the flows, which means that the flow 

between 𝑖 and 𝑗 nodes is 𝑥𝑖𝑗
– 𝑪: contains the costs of the unit flows between 𝑖 and 𝑗

(𝑐𝑖𝑗)

• All of the arcs in the network have a capacity (𝑢𝑖𝑗) 
which means the maximum feasible flow on the arcs

• And each node has a number (𝑏𝑖), which mean the
net flow generated at node i
– If 𝑏𝑖 > 0, then the node is called supply node (source)
– If 𝑏𝑖 < 0, then the node is demand node (sink)

Minimum cost flow problem
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min𝑍 =෍

𝑖=1

𝑛

෍
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𝑛

𝑐𝑖𝑗𝑥𝑖𝑗

෍
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𝑛
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𝑗=1

𝑛

𝑥𝑗𝑖 = 𝑏𝑖 ∀𝑖

0 ≤ 𝑥𝑖𝑗 ≤ 𝑢𝑖𝑗 for each arc

Minimum cost flow problem
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Network simplex method
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• Theorem: Every minimum-cost flow problem 
with finite capacities or nonnegative costs has an 
equivalent transportation problem

Transportation problem

30 60

B

50

40

D E

A
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Shortest route problem
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Maximum flow problem
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• Has two main steps
– Finding the leaving arc
– Finding the next basic feasible (BF) solution

• All of the feasible solutions are spanning tree solutions
• Feasible spanning tree: a spanning tree whose solution

from the node constraints also satisfies all the other
constraints (0 ≤ 𝑥𝑖𝑗 ≤ 𝑢𝑖𝑗 or
0 ≤ 𝑦𝑖𝑗 ≤ 𝑢𝑖𝑗)

• Theorem: fundamental theorem for the network simplex
method: basic solutions are spanning tree solutions (and 
conversely) and that BF solutions are solutions for feasible
spanning trees (and conversely)

Network simplex method
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Network simplex method

• Two arcs have
constraints on it

– 𝑢𝐴𝐵 = 10

– 𝑢𝐶𝐸 = 80

• The cost of the
arcs are the next

E 2

D 3

C 1

B 3

A 2 4 9

A B C D E𝑐𝑖𝑗
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• For demonstrate the upper bound technique, 
program 10 units of flow onto the AB arc

• The direction of the AB arc must be changed
• 𝑐𝐵𝐴 = −2 must be set
• Node A’s and node B’s supplies must increase and 

decrease by 10
• The redirected arc must be treated in other way, so

the decision variable of it must change to 𝑦𝐵𝐴
• If some units of flow will be programmed on this arc 

in the next, that means that we decrease the flow 
on this arc

Upper bound technique



46

Upper bound technique
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Upper bound technique
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• An initial feasible solution is need to be set up

Initial feasible solution
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Initial feasible solution
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• To begin an iteration of the network simplex
method, recall that the standard simplex method
criterion for selecting the entering basic variable is 
to choose the nonbasic variable which, when
increased from zero, will improve 𝑍 at the fastest
rate

• Kirchhoff I. law: junction rule: The algebraic sum of 
currents in a network of conductors meeting at a 
point is zero

• Kirchhoff II. law: loop rule: The directed sum of the
electrical potential differences (in this recent case: 
the flows) around any closed network is zero

Selecting the Entering Basic Variable
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• To choose the entering basic variable, take into
consideration all of the nonbasic arcs

• Program on each actual arc a 𝜃 units of flow

• Then increase or decrease all of the basic arc’s
flow as Kirchhoff’s second law said

• Then 𝑍 must be analysed

Selecting the Entering Basic Variable
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∆𝑍 = 𝑐𝐴𝐶𝜃 + 𝑐𝐶𝐸𝜃 − 𝑐𝐷𝐸𝜃 − 𝑐𝐴𝐷𝜃 = 4𝜃 + 𝜃 − 3𝜃 − 9𝜃 = −7𝜃

∆𝑍 = ቐ

−7 if ∆𝑥𝐴𝐶= 1
6 if ∆𝑦𝐴𝐵= 1
5 if ∆𝑥𝐸𝐷= 1

Selecting the Entering Basic Variable – for AC arc 
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• For finding the leaving basic variable, the task is 
to find the maximum value of the 𝜃, where all of 
the arc’s constraints are satisfied

• When the flows are decreasing this bound is the
nonnegativity constraint, but when the flows are
decreasing they are the capacity bounds

Finding the Leaving Basic Variable
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𝑥𝐴𝐶 = 𝜃 ≤ ∞
𝑥𝐶𝐸 = 50 + 𝜃 ≤ 80, so 𝜃 ≤ 30
𝑥𝐷𝐸 = 10 − 𝜃 ≥ 0, so 𝜃 ≤ 10
𝑥𝐴𝐷 = 40 − 𝜃 ≥ 0, so 𝜃 ≤ 40

• To satisfy all of the constraints the 𝜃 = 10 will be 
the best choice

• A nonnegativity constraint will be the bound, so
the use of the upper bound technique will not
happen in this step

Finding the Leaving Basic Variable
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Actual Solution after the First Step
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∆𝑍 = ቐ

7 if ∆𝑥𝐷𝐸= 1
−1 if ∆𝑦𝐴𝐵= 1
−2 if ∆𝑥𝐸𝐷= 1

𝑥𝐸𝐷 = 𝜃 ≤ ∞, so 𝜃 ≤ ∞
𝑥𝐴𝐷 = 30 − 𝜃 ≥ 0, so 𝜃 ≤ 30
𝑥𝐴𝐶 = 10 + 𝜃 ≤ ∞, so 𝜃 ≤ ∞
𝑥𝐶𝐸 = 60 + 𝜃 ≤ 0, so 𝜃 ≤ 20

• Because upper bound is reached, upper bound
technique is needed to use

2nd step
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2nd step – Results
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2nd step – Results
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∆𝑍 = ቐ

5 if ∆𝑥𝐷𝐸= 1
−1 if ∆𝑦𝐴𝐵= 1
2 if ∆𝑦𝐸𝐶= 1

𝑦𝐴𝐵 = 𝜃 ≤ 10, so 𝜃 ≤ 10
𝑥𝐴𝐶 = 30 + 𝜃, so 𝜃 ≤ ∞

𝑥𝐵𝐶 = 50 − 𝜃 ≥ 0, so 𝜃 ≤ 50

• Because upper bound is reached, upper bound
technique is needed to use

3rd step



60

3rd step – Results
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3rd step – Results
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∆𝑍 = ቐ

1 if ∆𝑥𝐴𝐵= 1
7 if ∆𝑥𝐷𝐸= 1
2 if ∆𝑦𝐸𝐶= 1

• None of the new arcs decreasing the objective
function

• Optimal solution is reached

4th step



63

Optimal solution
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