#### **HUNGARIAN METHOD**



#### Dr. Tibor SIPOS Ph.D. Dr. Árpád TÖRÖK Ph.D. Zsombor SZABÓ 2019



BME FACULTY OF TRANSPORTATION ENGINEERING AND VEHICLE ENGINEERING 32708-2/2017/INTFIN COURSE MATERIAL SUPPORTED BY EMMI







## **Hungarian Method**

- Degenerated problems cannot be solved easily by Streamlined Simplex Method
- Hungarian Method
- The Hungarian method has got its name from Harold W. Kuhn, who read Dénes König's book where the basic idea - Jenő Egerváry's theorem was mentioned in a footnote.



## **Matrix Reduction**

• The order:

– Red

– Green

|   | 1   | 1 2              |     | 4   | 5   |   |
|---|-----|------------------|-----|-----|-----|---|
| 1 | 6   | 3                | 5   | 2   | 7   | 2 |
|   | 4 3 | 1 0              | 3 3 | 00  | 5 5 |   |
| 2 | 3   | 7                | 4   | 4   | 1   | 1 |
|   | 2 1 | <mark>6</mark> 5 | 3 3 | 3 3 | 0 0 |   |
| 2 | 5   | 2                | 3   | 1   | 6   | 1 |
| 5 | 4 3 | 1 0              | 2 2 | 0 0 | 5 5 | L |
| 1 | 3   | 5                | 2   | 3   | 2   | 2 |
| 4 | 1 0 | 3 2              | 0 0 | 1 1 | 0 0 | Z |
|   | 1   | 1                | 0   | 0   | 0   |   |



#### **Matrix Reduction**

|   | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 | 3 | 0 | 3 | 0 | 5 |
| 2 | 1 | 5 | 3 | 3 | 0 |
| 3 | 3 | 0 | 2 | 0 | 5 |
| 4 | 0 | 2 | 0 | 1 | 0 |



| C <sub>ij</sub> | 1  | 2   | 3  | 4   | 5   |     |
|-----------------|----|-----|----|-----|-----|-----|
| 1               | 3  | 0   | 3  | 3 0 |     | 200 |
| 2               | 1  | 5   | 3  | 3   | 0   | 80  |
| 3               | 3  | 0   | 2  | 0   | 5   | 130 |
| 4               | 0  | 2   | 0  | 1   | 0   | 90  |
|                 | 30 | 210 | 60 | 80  | 120 |     |



| C <sub>ij</sub> | 1  | 2               | 3  | 4  | 5   |     |
|-----------------|----|-----------------|----|----|-----|-----|
| 1               | 3  | 200<br><b>0</b> | 3  | 0  | 5   | 0   |
| 2               | 1  | 5               | 3  | 3  | 0   | 80  |
| 3               | 3  | 0               | 2  | 0  | 5   | 130 |
| 4               | 0  | 2               | 0  | 1  | 0   | 90  |
|                 | 30 | 10              | 60 | 80 | 120 |     |



| C <sub>ij</sub> | 1  | 2        | 3  | 4  | 5       |     |
|-----------------|----|----------|----|----|---------|-----|
| 1               | 3  | 200<br>0 | 3  | 0  | 5       | 0   |
| 2               | 1  | 5        | 3  | 3  | 80<br>0 | 0   |
| 3               | 3  | 0        | 2  | 0  | 5       | 130 |
| 4               | 0  | 2        | 0  | 1  | 0       | 90  |
|                 | 30 | 10       | 60 | 80 | 40      |     |



| C <sub>ij</sub> | 1  | 2        | 3  | 4  | 5       |     |
|-----------------|----|----------|----|----|---------|-----|
| 1               | 3  | 200<br>0 | 3  | 0  | 5       | 0   |
| 2               | 1  | 5        | 3  | 3  | 80<br>0 | 0   |
| 3               | 3  | 10<br>0  | 2  | 0  | 5       | 120 |
| 4               | 0  | 2        | 0  | 1  | 0       | 90  |
|                 | 30 | 0        | 60 | 80 | 40      |     |



| C <sub>ij</sub> | 1  | 2        | 3  | 4       | 5              |    |
|-----------------|----|----------|----|---------|----------------|----|
| 1               | 3  | 200<br>0 | 3  | 0       | 5              | 0  |
| 2               | 1  | 5        | 3  | 3       | 80<br><b>0</b> | 0  |
| 3               | 3  | 10<br>0  | 2  | 80<br>O | 5              | 40 |
| 4               | 0  | 2        | 0  | 1       | 0              | 90 |
|                 | 30 | 0        | 60 | 0       | 40             |    |



| C <sub>ij</sub> | 1       | 2               | 3  | 4       | 5       |    |
|-----------------|---------|-----------------|----|---------|---------|----|
| 1               | 3       | 200<br><b>0</b> | 3  | 0       | 5       | 0  |
| 2               | 1       | 5               | 3  | 3       | 80<br>0 | 0  |
| 3               | 3       | 10<br>0         | 2  | 80<br>0 | 5       | 40 |
| 4               | 30<br>0 | 2               | 0  | 1       | 0       | 60 |
|                 | 0       | 0               | 60 | 0       | 40      |    |



|                 |         |          |                |         | -       |    |
|-----------------|---------|----------|----------------|---------|---------|----|
| C <sub>ij</sub> | 1       | 2        | 3              | 4       | 5       |    |
| 1               | 3       | 200<br>0 | 3              | 3 0     |         | 0  |
| 2               | 1       | 5        | 3              | 3       | 80<br>0 | 0  |
| 3               | 3       | 10<br>0  | 2              | 80<br>0 | 5       | 40 |
| 4               | 30<br>0 | 2        | 60<br><b>0</b> | 1       | 0       | 0  |
|                 | 0       | 0        | 0              | 0       | 40      |    |



# Hungarian method – Covering system

- Discrepancy: the remaining possible flow in each row and column, after the programming method
- Goal of the coverage step is to cover all of the zeros, with the minimum possible number of lines
- Cover all the columns, where the discrepancy is zero



|   |   | 1  | 2 |     | 3 |    | 4 |    | 5       |    |
|---|---|----|---|-----|---|----|---|----|---------|----|
| 1 | 3 |    | 0 | 200 | 3 |    | 0 |    | 5       | 0  |
| 2 | 1 |    | 5 |     | 3 |    | 3 |    | 80<br>0 | 0  |
| 3 | 3 |    | 0 | 10  | 2 |    | 0 | 80 | 5       | 40 |
| 4 | 0 | 30 | 2 |     | 0 | 60 | 1 |    | 0       | 0  |
|   | ( | C  | ( | C   | ( | 0  | ( | )  | 40      |    |



# Hungarian method – Covering system

- Whether the uncovered zero's row's discrepancy is zero
- Choose the non-covered zeros
- Cover their rows
- Uncover some columns to avoid double covered zeros
- Star the double covered zeros

- Whether the uncovered zero's row's discrepancy is not zero
- Zeros cannot be covered to fulfill the rules of the covering system
- Repairing path is need to be found



|   |   | 1  |   | 2   |   | 3  |   | 4  | 5  |    |
|---|---|----|---|-----|---|----|---|----|----|----|
| 1 | 3 |    | 0 | 200 | 3 |    | 0 |    | 5  | 0  |
| 2 |   |    |   |     |   |    |   |    | 80 | 0  |
| Z | 1 |    | 5 |     | 3 |    | 3 |    | 0  | 0  |
| 3 | 3 |    | 0 | 10  | 2 |    | 0 | 80 | 5  | 40 |
| 4 | 0 | 30 | 2 |     | 0 | 60 | 1 |    | 0  | 0  |
|   | ( | C  | ( | C   | ( | D  | ( | C  | 40 |    |



|   | 1 |    | 2 |     | 3 |    | 4 |    | 5  |    |
|---|---|----|---|-----|---|----|---|----|----|----|
| 1 | 3 |    | 0 | 200 | 3 |    | 0 |    | 5  | 0  |
| 2 |   |    |   |     |   |    |   |    | 80 | 0  |
| Z | 1 |    | 5 |     | 3 |    | 3 |    | 0  | 0  |
| 3 |   |    |   | 10  |   |    |   | 80 | _  | 40 |
|   | 3 |    | 0 |     | 2 |    | 0 |    | 5  |    |
| Л |   | 30 |   |     |   | 60 |   |    |    | 0  |
| 4 | 0 |    | 2 |     | 0 |    | 1 |    | 0  | 0  |
|   | ( | )  | ( | )   | ( | )  | ( | )  | 40 |    |



|   | 1    | 2 | 2   | 3    | 2 | 1  | 5  |    |
|---|------|---|-----|------|---|----|----|----|
| 1 | 3    | 0 | 200 | 3    | 0 |    | 5  | 0  |
| C |      |   |     |      |   |    | 80 | 0  |
| Ζ | 1    | 5 |     | 3    | 3 |    | 0  | 0  |
| R |      |   | 10  |      |   | 80 |    | 10 |
| 5 | 3    | 0 |     | 2    | 0 |    | 5  | 40 |
| Λ | * 30 |   |     | * 60 |   |    |    | 0  |
| 4 | 0    | 2 |     | 0    | 1 |    | 0  | 0  |
|   | 0    | 0 | )   | 0    | ( | C  | 40 |    |



# Hungarian method – discrepancy is 0

- The minimum of the uncovered elements have to be chosen
- Have to be extracted from the uncovered elements
- Have to be added to the twice covered elements



#### **Previous matrix**

|   | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 | 3 | 0 | 3 | 0 | 5 |
| 2 | 1 | 5 | 3 | 3 | 0 |
| 3 | 3 | 0 | 2 | 0 | 5 |
| 4 | 0 | 2 | 0 | 1 | 0 |



#### New matrix

|   | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 | 1 | 0 | 1 | 0 | 3 |
| 2 | 1 | 7 | 3 | 5 | 0 |
| 3 | 1 | 0 | 0 | 0 | 3 |
| 4 | 0 | 4 | 0 | 3 | 0 |



|   | 1              | 2        | 3              | 4       | 5       |    |
|---|----------------|----------|----------------|---------|---------|----|
| 1 | 1              | 200<br>0 | 1              | 0       | 3       | 0  |
| 2 | 1              | 7        | 3              | 5       | 80<br>0 | 0  |
| 3 | 1              | 10<br>0  | 60<br><b>0</b> | 60<br>0 | 3       | 0  |
| 4 | 30<br><b>0</b> | 4        | 0              | 3       | 40<br>0 | 20 |
|   | 0              | 0        | 0              | 20      | 0       |    |



|   |   | 1  | 2 |     | 3 |    | 4              |   | 5  |    |
|---|---|----|---|-----|---|----|----------------|---|----|----|
| 1 | 1 |    | 0 | 200 | 1 |    | 0              | 3 |    | 0  |
| 2 | 1 |    | 7 |     | 3 |    | 5              | 0 | 80 | 0  |
| 3 | 1 |    | 0 | 10  | 0 | 60 | 60<br><b>0</b> | 3 |    | 0  |
| 4 | 0 | 30 | 4 |     | 0 |    | 3              | 0 | 40 | 20 |
|   | ( | C  | ( | C   | ( | C  | 20             | ( | )  |    |



| - | , . | 1  | 2     | 3 |    | 4  |   | 5  |    |
|---|-----|----|-------|---|----|----|---|----|----|
| 1 |     |    | * 200 |   |    |    |   |    | 0  |
| T | 1   |    | 0     | 1 |    | 0  | 3 |    | 0  |
| 2 |     |    |       |   |    |    |   | 80 | 0  |
| ۷ | 1   |    | 7     | 3 |    | 5  | 0 |    | 0  |
| 3 |     |    | 10    |   | 60 | 60 |   |    | 0  |
| 5 | 1   |    | 0     | 0 |    | 0  | 3 |    | 0  |
| Л |     | 30 |       |   |    |    |   | 40 | 20 |
| 4 | 0   |    | 4     | 0 |    | 3  | 0 |    | 20 |
|   | (   | C  | 0     | ( | C  | 20 | ( | C  |    |



|   | · · | 1  | 2     | 3    | 4  |   | 5  |    |
|---|-----|----|-------|------|----|---|----|----|
| 1 |     |    | * 200 |      |    |   |    | 0  |
| T | 1   |    | 0     | 1    | 0  | 3 |    | 0  |
| 2 |     |    |       |      |    |   | 80 | 0  |
| ۷ | 1   |    | 7     | 3    | 5  | 0 |    | 0  |
| 2 |     |    | 10    | * 60 | 60 |   |    | 0  |
| 5 | 1   |    | 0     | 0    | 0  | 3 |    | 0  |
| Λ |     | 30 |       |      |    |   | 40 | 20 |
| 4 | 0   |    | 4     | 0    | 3  | 0 |    | 20 |
|   | (   | C  | 0     | 0    | 20 |   | 0  |    |



# **Repairing path**

- $Z_0$ : the uncovered zero element
- $Z_1$ : starred zero element in  $Z_0$ 's column
- $Z_2$ : unstarred zero element in  $Z_1$ 's row
- Continue this method, until the chosen unstarred zero is in the column, where the discrepancy is larger than 0
- Then choose the minimum of the discrepancies and the starred zeros' flows (now 20)
- All of the starred cells must be decreased by the minimum, while the unstarred zeros must be increased by this value, then all of the coverage lines must be deleted



# **Repairing path**

- $Z_0$ : cell 43
- $Z_1$ : cell 33
- Z<sub>2</sub>: cell 32
- *Z*<sub>3</sub>: cell 12
- Z<sub>4</sub>: cell 14

| 43  |   |   | 1  | 2     | 3    | 4  | - , | 5  |    |
|-----|---|---|----|-------|------|----|-----|----|----|
| 33  | 1 |   |    | * 200 |      |    |     |    | 0  |
| 132 | 1 | 1 |    | 0     | 1    | 0  | 3   |    | 0  |
| 112 | 2 | 1 |    | 7     | 3    | 5  | 0   | 80 | 0  |
| 114 | Ŋ |   |    | 10    | * 60 | 60 |     |    | 0  |
|     | 5 | 1 |    | 0     | 0    | 0  | 3   |    | 0  |
|     | 4 | 0 | 30 | 4     | 0    | 3  | 0   | 40 | 20 |
|     |   | ( | )  | 0     | 0    | 20 | (   | C  |    |



## **Optimal solution**

|   | 1       | 2          | 3         | 4       | 5       |   |
|---|---------|------------|-----------|---------|---------|---|
| 1 | 1       | * 180<br>0 | 1         | 20<br>0 | 3       | 0 |
| 2 | 1       | 7          | 3         | 5       | 80<br>0 | 0 |
| 3 | 1       | 30<br>0    | * 40<br>0 | 60<br>0 | 3       | 0 |
| 4 | 30<br>0 | 4          | 20<br>0   | 3       | 40<br>0 | 0 |
|   | 0       | 0          | 0         | 0       | 0       |   |



#### **Alternate optimum – Repairing path**

- $Z_0$ : cell 43
- Z<sub>1</sub>: cell 33
- Z<sub>2</sub>: cell 34

| .3 |   | - | 1  | 2     | 3    | 4  |   | 5  |    |
|----|---|---|----|-------|------|----|---|----|----|
| 3  | 1 |   |    | * 200 |      |    |   |    | 0  |
| Δ  | 1 | 1 |    | 0     | 1    | 0  | 3 |    | 0  |
| -  | 2 |   |    |       |      |    |   | 80 | 0  |
|    |   | 1 |    | 7     | 3    | 5  | 0 |    | _  |
|    | 2 |   |    | 10    | * 60 | 60 |   |    | 0  |
|    | J | 1 |    | 0     | 0    | 0  | 3 |    | U  |
|    | 7 |   | 30 |       |      |    |   | 40 | 20 |
|    | 4 | 0 |    | 4     | 0    | 3  | 0 |    | 20 |
|    |   | ( | C  | 0     | 0    | 20 | ( | C  |    |



#### **Alternate optimum – Optimal solution**

|   | 1       | 2          | 3         | 4       | 5       |   |
|---|---------|------------|-----------|---------|---------|---|
| 1 | 1       | * 200<br>0 | 1         | 0       | 3       | 0 |
| 2 | 1       | 7          | 3         | 5       | 80<br>0 | 0 |
| 3 | 1       | 10<br>0    | * 40<br>0 | 80<br>0 | 3       | 0 |
| 4 | 30<br>0 | 4          | 20<br>0   | 3       | 40<br>0 | 0 |
|   | 0       | 0          | 0         | 0       | 0       |   |



#### **Alternate optimum – Covering System**

|   | , - | 1  | 2 |     | 3 |    | 4              | -, | 5  |    |
|---|-----|----|---|-----|---|----|----------------|----|----|----|
| 1 | 1   |    | 0 | 200 | 1 |    | 0              | 3  |    | 0  |
| 2 | 1   |    | 7 |     | 3 |    | 5              | 0  | 80 | 0  |
| 3 | 1   |    | 0 | 10  | 0 | 60 | 60<br><b>0</b> | 3  |    | 0  |
| 4 | 0   | 30 | 4 |     | 0 |    | 3              | 0  | 40 | 20 |
|   | (   | C  | ( | C   | ( | C  | 20             | (  | )  |    |



#### **Alternate optimum – Covering System**

|   | 1 |    | 2        | 3    | 4  | 5 |    |    |
|---|---|----|----------|------|----|---|----|----|
| 1 | 1 |    | 200<br>0 | 1    | 0  | 3 |    | 0  |
| 2 | 1 |    | 7        | 3    | 5  | 0 | 80 | 0  |
| 3 |   |    | * 10     | * 60 | 60 |   |    | 0  |
|   | 1 |    | 0        | 0    | 0  | 3 |    | 0  |
| 4 | 0 | 30 | 4        | 0    | 3  | 0 | 40 | 20 |
|   | 0 |    | 0        | 0    | 20 | ( | )  |    |



#### **Alternate optimum – Covering System**

|   | 1 |    | 2    | 3    | 4  | 5 |    |    |
|---|---|----|------|------|----|---|----|----|
| 1 |   |    | 200  |      |    |   |    | 0  |
|   | 1 |    | 0    | 1    | 0  | 3 |    | U  |
| 2 | 1 |    | 7    | 3    | 5  | 0 | 80 | 0  |
| 3 |   |    | * 10 | * 60 | 60 |   |    | 0  |
|   | 1 |    | 0    | 0    | 0  | 3 |    | 0  |
| 4 | 0 | 30 | 4    | 0    | 3  | 0 | 40 | 20 |
|   | 0 |    | 0    | 0    | 20 | ( | )  |    |



#### **Alternate optimum – Repairing path**

- $Z_0$ : cell 43
- $Z_1$ : cell 33
- Z<sub>2</sub>: cell 34

| 13 |   |   | 1  | 2    | 3    | 4  |   | 5  |    |
|----|---|---|----|------|------|----|---|----|----|
| 33 | 1 |   |    | 200  |      |    |   |    | 0  |
| 34 | T | 1 |    | 0    | 1    | 0  | 3 |    | 0  |
|    | 2 |   |    |      |      |    |   | 80 | 0  |
|    | _ | 1 |    | 7    | 3    | 5  | 0 |    |    |
|    | 2 |   |    | * 10 | * 60 | 60 |   |    | 0  |
| 5  | 1 |   | 0  | 0    | 0    | 3  |   | 0  |    |
|    | Л |   | 30 |      |      |    |   | 40 | 20 |
|    | 4 | 0 |    | 4    | 0    | 3  | 0 |    | 20 |
|    |   | ( | C  | 0    | 0    | 20 | ( | C  |    |



#### **Alternate optimum – Optimal solution**

|   | 1       | 2         | 3         | 4       | 5       |   |
|---|---------|-----------|-----------|---------|---------|---|
| 1 | 1       | 200<br>0  | 1         | 0       | 3       | 0 |
| 2 | 1       | 7         | 3         | 5       | 80<br>0 | 0 |
| 3 | 1       | * 10<br>0 | * 40<br>0 | 80<br>0 | 3       | 0 |
| 4 | 30<br>0 | 4         | 20<br>0   | 3       | 40<br>0 | 0 |
|   | 0       | 0         | 0         | 0       | 0       |   |



#### Conclusion










## **Assignment method**

- Aim: choose an optimal assignment of *n* men to *n* jobs
  - Numerical ratings are given for each man's performance on each job
  - The investigated process should be investigated rather from a performance-like point of view, the objective function might be a maximize function

$$c_{ij}' = \max_{i,j} c_{ij} - c_{ij} \forall i,j$$

• The assignment problem is a special case of the transportation problem, with two constraints

$$-a_i = b_j = 1 \forall i, j$$
$$-x_{ij} = \begin{cases} 0\\1 \forall i, j \end{cases}$$



### **Linear Programming Method**

$$\min Z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$
$$\sum_{\substack{j=1\\m}}^{n} x_{ij} = 1 \forall i$$
$$\sum_{i=1}^{m} x_{ij} = 1 \forall j$$
$$x_{ij} = \begin{cases} 0 \\ 1 \\ \forall i, j \end{cases}$$



## **Example problem**

|   | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| 1 | 6 | 1 | 3 | 4 |
| 2 | 2 | 5 | 7 | 1 |
| 3 | 4 | 1 | 2 | 6 |
| 4 | 5 | 2 | 4 | 8 |



## **Feasible Methods**

- As the assignment problem is a degenerated transportation problem, the most conveniant way to solve, is the Hungarian method
- Two approaches:
  - Discrepancy method (as a ,classic Hungarian method')
  - Signing method (special method for the assignment problems)



# **Matrix reduction**

- Same as the Hungarian method
- The sum of the minimum of each row's (5), and at the second step the sum of the minimum of each column's (2) summary (7) is considered as a lower boundary of the optimal solution
- The order:
  - Red
  - Green



|   | 1   | 2   | 3                | 4                |          |
|---|-----|-----|------------------|------------------|----------|
| 1 | 6   | 1   | 3                | 4                | 1        |
|   | 5 4 | 0 0 | 2 1              | 3 3              | <b>–</b> |
| 2 | 2   | 5   | 7                | 1                | 1        |
| Z | 1 0 | 4 4 | <mark>6</mark> 5 | 0 0              | L L      |
| 2 | 4   | 1   | 2                | 6                | 1        |
| J | 3 2 | 0 0 | 1 0              | <b>55</b>        | Ŧ        |
|   | 5   | 2   | 4                | 8                | n        |
| 4 | 3 2 | 0 0 | 2 1              | <mark>6</mark> 6 | Z        |
|   | 1   | 0   | 1                | 0                | 5<br>2   |

- Feasible cell:  $c_{ij} = 0$
- Tied elements:  $x_{ij} = 1$
- If there are not any starred zeros in the column or the row of the chosen feasible cell, then we star it
- Starred zeros (the tied elements)
- Non-starred feasible cells

|   | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| 1 | 4 | 0 | 1 | 3 |
| 2 | 0 | 4 | 5 | 0 |
| 3 | 2 | 0 | 0 | 5 |
| 4 | 2 | 0 | 1 | 6 |



|   | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| 1 | 4 | 0 | 1 | 3 |
| 2 | 0 | 4 | 5 | 0 |
| 3 | 2 | 0 | 0 | 5 |
| 4 | 2 | 0 | 1 | 6 |



|   | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| 1 | 4 | 0 | 1 | 3 |
| 2 | 0 | 4 | 5 | 0 |
| 3 | 2 | 0 | 0 | 5 |
| 4 | 2 | 0 | 1 | 6 |



|   | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| 1 | 4 | 0 | 1 | 3 |
| 2 | 0 | 4 | 5 | 0 |
| 3 | 2 | 0 | 0 | 5 |
| 4 | 2 | 0 | 1 | 6 |



|   | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| 1 | 4 | 0 | 1 | 3 |
| 2 | 0 | 4 | 5 | 0 |
| 3 | 2 | 0 | 0 | 5 |
| 4 | 2 | 0 | 1 | 6 |



|   | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| 1 | 4 | 0 | 1 | 3 |
| 2 | 0 | 4 | 5 | 0 |
| 3 | 2 | 0 | 0 | 5 |
| 4 | 2 | 0 | 1 | 6 |



|   | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| 1 | 4 | 0 | 1 | 3 |
| 2 | 0 | 4 | 5 | 0 |
| 3 | 2 | 0 | 0 | 5 |
| 4 | 2 | 0 | 1 | 6 |



|   | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| 1 | 4 | 0 | 1 | 3 |
| 2 | 0 | 4 | 5 | 0 |
| 3 | 2 | 0 | 0 | 5 |
| 4 | 2 | 0 | 1 | 6 |



### Coverage

- The coverage step is also the same as in the transportation problem
- Those programmed cells (starred zeros cells with red background) need to be covered where the discrepancy is zero
- Similarly to the previously presented modell in the repairing section the starred and the unstarred zeros must be changed
- Special method for assignment problem



- Goal: create a covering system
- The first step is to label the row, where there are no tied elements, marked by a black '-' sign
- Find the unstarred zero in the marked row (there must be at least one)
- The column where the unstarred zero is located (in the marked row) must be labelled with the number of the row
- Rows of starred zeros (cells with red background) located in a labelled column must be marked by the number of the column (indicated by green)
- Must be continued until all the rows and columns have marked, or there is no more unstarred zero in the starred zero's row
- Two available results
  - Labelling ends in row
  - Labelling ends in column



|      | 1 | 2 | 3 | 4 | sign |
|------|---|---|---|---|------|
| 1    | 4 | 0 | 1 | 3 |      |
| 2    | 0 | 4 | 5 | 0 |      |
| 3    | 2 | 0 | 0 | 5 |      |
| 4    | 2 | 0 | 1 | 6 | -    |
| sign |   |   |   |   |      |



|      | 1 | 2 | 3 | 4 | sign |
|------|---|---|---|---|------|
| 1    | 4 | 0 | 1 | 3 |      |
| 2    | 0 | 4 | 5 | 0 |      |
| 3    | 2 | 0 | 0 | 5 |      |
| 4    | 2 | 0 | 1 | 6 | -    |
| sign |   | 4 |   |   |      |



|      | 1 | 2 | 3 | 4 | sign |
|------|---|---|---|---|------|
| 1    | 4 | 0 | 1 | 3 | 2    |
| 2    | 0 | 4 | 5 | 0 |      |
| 3    | 2 | 0 | 0 | 5 |      |
| 4    | 2 | 0 | 1 | 6 | -    |
| sign |   | 4 |   |   |      |



# Labelling ends in row

- Have to cover
  Signed columns
  Unsigned rows
- The minimum of the uncovered elements is need to be chosen
  - Extract from the uncovered elements
  - Add to the twice covered elements

|      | 1 | 2 | 3 | 4 | sign |
|------|---|---|---|---|------|
| 1    | 4 | 0 | 1 | 3 | 2    |
| 2    | 0 | 4 | 5 | 0 |      |
|      |   |   |   |   |      |
| З    | 2 | 0 | 0 | 5 |      |
|      |   |   |   |   |      |
| 4    | 2 | 0 | 1 | 6 | -    |
| sign |   | 4 |   |   |      |



### Labelling ends in row

|   | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| 1 | 3 | 0 | 0 | 2 |
| 2 | 0 | 5 | 5 | 0 |
| 3 | 2 | 1 | 0 | 5 |
| 4 | 1 | 0 | 0 | 5 |



|      | 1 | 2 | 3 | 4 | sign |
|------|---|---|---|---|------|
| 1    | 3 | 0 | 0 | 2 |      |
| 2    | 0 | 5 | 5 | 0 |      |
| 3    | 2 | 1 | 0 | 5 |      |
| 4    | 1 | 0 | 0 | 5 |      |
| sign |   |   |   |   |      |



|      | 1 | 2 | 3 | 4 | sign |
|------|---|---|---|---|------|
| 1    | 3 | 0 | 0 | 2 | 2    |
| 2    | 0 | 5 | 5 | 0 |      |
| 3    | 2 | 1 | 0 | 5 | 3    |
| 4    | 1 | 0 | 0 | 5 | -    |
| sign |   | 4 | 4 |   |      |



|      | 1 | 2 | 2 |   | 3 | 4 | sign |
|------|---|---|---|---|---|---|------|
| 1    | 3 | 0 |   | 0 |   | 2 | 2    |
| 2    | 0 | 5 |   | 5 |   | 0 |      |
|      | 2 |   |   |   |   |   |      |
| 3    | 2 | Ţ |   | 0 |   | 5 | 3    |
| 4    | 1 | 0 |   | 0 |   | 5 | -    |
| sign |   | 4 | ŀ | L | 1 |   |      |



|   | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| 1 | 2 | 0 | 0 | 1 |
| 2 | 0 | 6 | 6 | 0 |
| 3 | 1 | 1 | 0 | 4 |
| 4 | 0 | 0 | 0 | 4 |



|      | 1 | 2 | 3 | 4 | sign |
|------|---|---|---|---|------|
| 1    | 2 | 0 | 0 | 1 |      |
| 2    | 0 | 6 | 6 | 0 |      |
| 3    | 1 | 1 | 0 | 4 |      |
| 4    | 0 | 0 | 0 | 4 |      |
| sign |   |   |   |   |      |



|      | 1 | 2 | 3 | 4 | sign |
|------|---|---|---|---|------|
| 1    | 2 | 0 | 0 | 1 | 2    |
| 2    | 0 | 6 | 6 | 0 | 1    |
| 3    | 1 | 1 | 0 | 4 | 3    |
| 4    | 0 | 0 | 0 | 4 | -    |
| sign | 4 | 4 | 4 | 2 |      |



# Labelling ends in column

- Covering system cannot be formed
- Have to define where the labelling process ends
- The label number's row (2<sup>nd</sup> row) must be chosen
- The starred zero must be modified to unstarred and vice versa
- So the last column's (where the labeling ends) unstarred zero will be starred
- In this case one of the unstarred zeros in the '-' labelled row can be starred
- Technically a reparing path is found

|      | 1 | 2 | 3 | 4 | sign |
|------|---|---|---|---|------|
| 1    | 2 | 0 | 0 | 1 | 2    |
| 2    | 0 | 6 | 6 | 0 | 1    |
| 3    | 1 | 1 | 0 | 4 | 3    |
| 4    | 0 | 0 | 0 | 4 | -    |
| sign | 4 | 4 | 4 | 2 |      |



### Labelling ends in column

| - | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| 1 | 2 | 0 | 0 | 1 |
| 2 | 0 | 6 | 6 | 0 |
| 3 | 1 | 1 | 0 | 4 |
| 4 | 0 | 0 | 0 | 4 |



### **Solution**

|   | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| 1 | 6 | 1 | 3 | 4 |
| 2 | 2 | 5 | 7 | 1 |
| 3 | 4 | 1 | 2 | 6 |
| 4 | 5 | 2 | 4 | 8 |



|   | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| 1 | 4 | 0 | 1 | 3 |
| 2 | 0 | 4 | 5 | 0 |
| 3 | 2 | 0 | 0 | 5 |
| 4 | 2 | 0 | 1 | 6 |



|   | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| 1 | 4 | 0 | 1 | 3 |
| 2 | 0 | 4 | 5 | 0 |
| 3 | 2 | 0 | 0 | 5 |
| 4 | 2 | 0 | 1 | 6 |



|   | 1 |  | 2 |  | 3 |  | 4 |
|---|---|--|---|--|---|--|---|
| 1 | 4 |  | 0 |  | 1 |  | 3 |
| 2 | 0 |  | 4 |  | 5 |  | 0 |
| 3 | 2 |  | 0 |  | 0 |  | 5 |
| 4 | 2 |  | 0 |  | 1 |  | 6 |



|   | 1 | 2 |  | 3 |  | 4 |
|---|---|---|--|---|--|---|
| 1 | 4 | 0 |  | 1 |  | 3 |
| 2 | 0 | 4 |  | 5 |  | 0 |
| 3 | 2 | 0 |  | 0 |  | 5 |
| 4 | 2 | 0 |  | 1 |  | 6 |



## Reminder

|   | 1 | 4 | 2 | 3 | 3 | 4 |   | 1 |   | 2 | 3 | 4 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 4 | 0 |   | 1 |   | 3 | 1 | 4 | 0 |   | 1 | 3 |
| 2 | 0 | 4 |   | 5 |   | 0 | 2 | 0 | 4 |   | 5 | 0 |
|   |   |   |   |   |   |   |   |   |   |   |   |   |
| 3 | 2 | 0 |   | 0 |   | 5 | 2 | 2 | 0 |   | 0 | 5 |
| J |   |   |   |   |   |   | J |   |   |   |   |   |
| 4 | 2 | 0 |   | 1 |   | 6 | 4 | 2 | 0 |   | 1 | 6 |

Discrepancy method



|   | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| 1 | 2 | 0 | 1 | 1 |
| 2 | 0 | 6 | 7 | 0 |
| 3 | 0 | 0 | 0 | 3 |
| 4 | 0 | 0 | 1 | 4 |


|   | 1 |  | 2 |  | 3 |  | 4 |
|---|---|--|---|--|---|--|---|
| 1 | 2 |  | 0 |  | 1 |  | 1 |
| 2 | 0 |  | 6 |  | 7 |  | 0 |
| 3 | 0 |  | 0 |  | 0 |  | 3 |
| 4 | 0 |  | 0 |  | 1 |  | 4 |











|   | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| 1 | 2 | 0 | 1 | 1 |
| 2 | 0 | 6 | 7 | 0 |
| 3 | 0 | 0 | 0 | 3 |
| 4 | 0 | 0 | 1 | 4 |







|   | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| 1 | 2 | 0 | 1 | 1 |
| 2 | 0 | 6 | 7 | 0 |
| 3 | 0 | 0 | 0 | 3 |
| 4 | 0 | 0 | 1 | 4 |



|   | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| 1 | 6 | 1 | 3 | 4 |
| 2 | 2 | 5 | 7 | 1 |
| 3 | 4 | 1 | 2 | 6 |
| 4 | 5 | 2 | 4 | 8 |



## Conclusion

| Transportation method                         |                |                        |                                       |               |                |               |  |
|-----------------------------------------------|----------------|------------------------|---------------------------------------|---------------|----------------|---------------|--|
| Transportation method                         |                |                        | Assignment method                     |               |                |               |  |
| Streamlined simplex method                    |                |                        | Hungarian method                      |               |                |               |  |
| Northwest<br>Corner Path                      | Dantzig method | Vogel method           | Discrepancy method                    |               | Signing method |               |  |
| Programming Prog                              |                | Defining<br>differency | Matrix reduction                      |               |                |               |  |
|                                               | Programming    | parameter              | Programming                           |               |                |               |  |
|                                               |                | Programming            | Finding the covering system Labelling |               |                | lling         |  |
| Distribution method                           |                | Discrepancy is 0       | Discrepancy is<br>not 0               | Ends in row   | Ends in column |               |  |
| Finding the polygon, based upon the potential |                |                        |                                       | Finding       | Covering       | Finding       |  |
| system                                        |                | Matrix                 | reparing path                         | system        | reparing path  |               |  |
| Reprogramming the flows based upon the found  |                |                        | transformation                        | Reprogramming | Matrix         | Reprogramming |  |
| polygon                                       |                |                        |                                       | flows         | transformation | flows         |  |



# BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS

Dr. Tibor SIPOS Ph.D. Dr. Árpád TÖRÖK Ph.D. Zsombor SZABÓ



email: szabo.zsombor@mail.bme.hu



BME FACULTY OF TRANSPORTATION ENGINEERING AND VEHICLE ENGINEERING 32708-2/2017/INTFIN COURSE MATERIAL SUPPORTED BY EMMI