DECISION-MAKING METHODS IN TRANSPORTATION THE SIMPLEX METHOD (II.) TWO-PHASE SIMPLEX METHOD & DUALITY THEORY

Dr. Tibor SIPOS Ph.D. Anteneh AFEWORK Zsombor SZABÓ

2020

BME FACULTY OF TRANSPORTATION ENGINEERING AND VEHICLE ENGINEERING 32708-2/2017/INTFIN COURSE MATERIAL SUPPORTED BY EMMI

Summary of the previous lecture

General Linear Programming Problems:

This method is able to find a starting basic feasible solution whenever it exists.

Phases of the Two-phase Simplex method:

- 1. In the first phase the algorithm tries to determine an initial basic feasible solution. To do this, artificial variables are introduced in phase 1 and dropped, when beginning the second phase.
- 2. If the constraints are feasible, then the basic feasible solution from the end of phase 1 is used in phase 2 to begin a search for the optimal solution.

Minimize $Z = 6x_1 + 3x_2$ Subject to $x_1 + x_2 \ge 1$ $2x_1 - x_2 \ge 1$ $3x_2 \leq 2$ and $x_1, x_2 \ge 0$

a. Standard form b. Introducing slack/surplus variables Phase 1

- c. Introducing new artifical variables and change objective func.
- d. Creating table
- e. Pivot variable
- f. Creating a new table (+checking optimality)
- g. Identifying initial BFS Phase 2
- h. Dropping the new artifical variables and change back obj.func.
- *i.* Solve with Simplex

Step a,b – Standard form+Introducing slack/surplus variables

= the 4 steps of converting the GLPP to SLPP!

Minimize
$$Z = 6x_1 + 3x_2$$
Maximize $(-Z) = -6x_1 - 3x_2$ Subject toSubject to $x_1 + x_2 \ge 1$ $x_1 + x_2 - s_1 = 1$ $2x_1 - x_2 \ge 1$ $2x_1 - x_2 - s_2 = 1$

$$2x_1 - x_2 - s_2 = 1$$

 $3x_2 + s_3 = 2$

and $x_1, x_2, s_1, s_2, s_3 \ge 0$

- a. Standard form b. Introducing slack/surplus variables Phase 1
- c. Introducing new artifical variables and change objective func.
- d. Creating table
- e. Pivot variable
- Creating a new table f. (+checking optimality)
- *g.* Identifying initial BFS Phase 2
- *h.* Dropping the new artifical variables and change back obj.func.
- *Solve with Simplex*

 $3x_2 \leq 2$

and $x_1, x_2 \ge 0$

Step c – Introducing new artifical variables and change the objective function

- •Add new artifical variables (y_i) where we had surplus variables
- •Change the objective function to minimize the sum of the new artifical variables

Maximize

 $(-Z) = -6x_1 - 3x_2$

Subject to

 $x_1 + x_2 - s_1 = 1$ $2x_1 - x_2 - s_2 = 1$ $3x_2 + s_3 = 2$ and $x_1, x_2, s_1, s_2, s_3 \ge 0$

Minimize

 $y_1 + y_2$ Subject to

$$x_1 + x_2 - s_1 + y_1 = 1$$

$$2x_1 - x_2 - s_2 + y_2 = 1$$

$$3x_2 + s_3 = 2$$

 $x_1, x_2, s_1, s_2, s_3, y_1 y_2 \ge 0$

a. Standard form b. Introducing slack/surplus variables Phase 1

- c. Introducing new artifical variables and change objective func.
- d. Creating table
- e. Pivot variable
- f. Creating a new table (+checking optimality)
- g. Identifying initial BFS Phase 2
- h. Dropping the new artifical variables and change back obj.func.
 i. Solve with Simplex

- Step d Creating the table (initial table of Phase 1)
 •coefficients corresponding to the linear constraint variables
 - •coefficients of the objective functions (same as in case of Simplex related to Phase 2; write the objective in terms of non-basic variables related to Phase 1: (-1) in the columns of y_i , converted to 0 by row operations)

Original objective function:

Maximize $(-Z) = -6x_1 - 3x_2 -$

Phase 1

- c. Introducing new artifical variables and change objective func.
- d. Creating table
- e. Pivot variable
- f. Creating a new table
 - (+checking optimality)
- g. Identifying initial BFS

Step e – Identifying the pivot variable Identifying pivot variable using the table: in the column of the highest positive value in bottom row (because we are minimizing now, not maximizing); in the row of the smallest non-negative indicator (indicator: divide the beta values of the linear constraints by their corresponding values from the column containing the possible pivot variable)

Phase 1

- c. Introducing new artifical variables and change objective func.
- d. Creating table
- e. Pivot variable
- f. Creating a new table (+checking optimality)

g. Identifying initial BFS

- **Step f** *Creating the new table*
 - I. To optimize the pivot variable, it will need to be *c* transformed into a unit value (value of 1)
 - II. The other values in the column containing the unit value have to become zero
 - III. During this, the table have to be kept equivalent

Phase 1

- c. Introducing new artifical variables and change objective func.
- d. Creating table
- e. Pivot variable
- *f. Creating a new table* (+checking optimality)
- *q. Identifying initial BFS*

New tableau value = (Negative value in old tableau pivot column) x (value in new tableau pivot row) + (Old tableau value)

The new table will be used to identify a new possible optimal solution

Step f – *Creating the new table*

- I. To optimize the pivot variable, it will need to be transformed into a unit value (value of 1)
- II. The other values in the column containing the unit value have to become zero
- III. During this, the table have to be kept equivalent

New tableau value = (Negative value in old tableau pivot column) x (value in new tableau pivot row) + (Old tableau value) (for example: 3 = (-6)*(-1/2)+0)

		\mathbf{x}_1	x ₂	\mathbf{s}_1	\mathbf{s}_2	\mathbf{s}_3	$\mathbf{y_1}$	y ₂	b	
The initial table:		1	1	-1	0	0	1	0	1	
		2	-1	0	-1	0	0	1	1	
		0	3	0	0	1	0	0	2	
-	Ph. II.	(6)	3	0	(0)	0	0	0	0	
-	Ph. I.	3	0	-1	-1	0	0	0	2	
		_							1	
Old pivo	t column	x ₁	x ₂	\mathbf{s}_1	\mathbf{s}_2	\mathbf{s}_3	$\mathbf{y_1}$	\mathbf{y}_2	b	
		0	3/2	-1	1/2	0	1	-1/2	1/2	Now
The new table:		1	-1/2	0	-1/2	0	0	1/2	1/2	nivot row
		0	3	0	0	1	0	0	2	procrow
	Ph. II.	0	6	0	3	0	0	-3	-3	_
	Ph. I.	0	3/2	-1	1/2	0	0	-3/2	1/2	11

Step f – (+checking for optimality)

•Check optimality using the table: all values in the last row must contain values less than or equal to zero (because we are minimizing in Phase 1, not maximizing)

Phase 1
c Introducing new
artifical variables and
change objective func.
d. Creating table
e. Pivot variable
f. Creating a new table

(+checking optimality) g. Identifying initial BFS

	\mathbf{x}_1	x ₂	\mathbf{s}_1	\mathbf{s}_2	\mathbf{s}_3	$\mathbf{y_1}$	y ₂	b
	0	3/2	-1	1/2	0	1	-1/2	1/2
	1	-1/2	0	-1/2	0	0	1/2	1/2
	0	3	0	0	1	0	0	2
Ph. II.	0	6	0	3	0	0	-3	-3
Ph. I.	0	3/2	-1	(1/2)	0	0	-3/2	1/2

Step e (again) – Identifying the pivot variable

Identifying pivot variable using the table: in the column of the highest positive value in bottom row (because we are minimizing now, not maximizing); in the row of the smallest non-negative indicator (indicator: divide the beta values of the linear constraints by their corresponding values from the column containing the possible pivot variable)

Phase 1

- c. Introducing new artifical variables and change objective func.
- d. Creating table
- e. Pivot variable
- f. Creating a new table (+checking optimality)g. Identifying initial BFS

	x ₁	X ₂	\mathbf{s}_1	\mathbf{s}_2	\mathbf{S}_3	$\mathbf{y_1}$	\mathbf{y}_2	b	Indicator
	0	3/2	-1	1/2	0	1	-1/2	1/2	1/3 <
	1	-1/2	0	-1/2	0	0	1/2	1/2	-1
	0	3	0	0	1	0	0	2	2/3
Ph. II.	0	6	0	3	0	0	-3	-3	
Ph. I.	0	3/2	-1	1/2	0	0	-3/2	1/2	Smallest ¹ non-negative
B ^o b		i Highest pos. value							indicator

Step f (again) – *Creating the new table (+checking optimality)*

- I. To optimize the pivot variable, it will need to be transformed into a unit value (value of 1)
- II. The other values in the column containing the unit value have to become zero
- III. During this, the table have to be kept equivalent

New tableau value = (Negative value in old tableau pivot column) x (value in new tableau pivot row) + (Old tableau value) (for example: 2/3 = (+1/2)*(1/3)+(1/2))

		$\mathbf{x_1}$	X_2	\mathbf{s}_1	\mathbf{s}_2	\mathbf{s}_3	$\mathbf{y_1}$	\mathbf{y}_2	b	
The old table.		0	(3/2)	-1	1/2	0	1	-1/2	1/2	
The old table:		1	-1/2	0	-1/2	0	0	1/2	(1/2)	
		0	3	0	0	1	0	0	2	
	Ph. II.	0	6	0	3	0	0	-3	-3	
	Ph. I.	0	3/2	-1	1/2	0	0	-3/2	1/2	
Old pi	vot colun	nn								
		\mathbf{x}_1	x ₂	\mathbf{s}_1	\mathbf{s}_2	\mathbf{s}_3	$\mathbf{y_1}$	\mathbf{y}_2	b	New
		0	1	-2/3	1/3	0	2/3	-1/3	1/3	pivot row
The new table:		1	0	-1/3	-1/3	0	1/3	1/3	2/3	
		0	0	2	-1	1	-2	1	1	
	Ph. II.	0	0	4	1	0	-4	-1	-5	
Ontimality reached	Ph. I.	0	0	0	0	0	-1	-1	0	14
optimanty redencu										

Step g– *Identifying initial BFS*

•Basic variable: have a single 1 value in its column and the rest are zeros; the row that contains the 1 value will correspond to the beta value. The beta value will represent the optimal solution for the given variable

•Non-basic variable: the remaining variables; the optimal solution of the non-basic variables is zero

Phase	1
-------	---

- c. Introducing new artifical variables and change objective func.
- d. Creating table
- e. Pivot variable
- f. Creating a new table
 - (+checking optimality)
- g. Identifying initial BFS

Initial BFS:	
x ₁ = 2/3	<i>y</i> ₁ = 0
x ₂ = 1/3	<i>y</i> ₂ = 0
<i>s</i> ₁ = 0	
s ₂ = 0	
s ₃ = 1	

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{s}_1	\mathbf{s}_2	S ₃	y ₁	y ₂	b
	0	1	-2/3	1/3	0	2/3	-1/3	1/3
	1	0	-1/3	-1/3	0	1/3	1/3	2/3
	0	0	2	-1	1	-2	1	1
Ph. II.	0	0	4	1	0	-4	-1	-5
Ph. I.	0	0	0	0	0	-1	-1	0

Step h – Dropping the new artifical values and change back objective function

•Drop the columns of the new artificial variables and the row corresponding to the objective of the first phase

- a. Standard form
 b. Introducing slack/surplus variables
 Phase 1
- c. Introducing new artifical variables and change objective func.
- d. Creating table
- e. Pivot variable
- f. Creating a new table (+checking optimality)
- g. Identifying initial BFS Phase 2
- h. Dropping the new artifical variables and change back obj.func.
- *i.* Solve with Simplex

Step h – Solve with Simplex Method

•As we included the original objective as an added row in the tables of phase 1, it is in the right form

•Since we have the initial table, we check for optimality (are there any negative values in the bottom row related to the variables?)

•If no: we have reached optimality, identify optimal values

•If yes: Choose pivot, create new table, check optimality again, and so on.

	x ₁	x ₂	s ₁ s ₂		\mathbf{s}_3	b
	0	1	-2/3	1/3	0	1/3
	1	0	-1/3	-1/3	0	2/3
	0	0	2	-1	1	1
Ph. II.	0	0	4	1	0	-5
			Optimality	reached		

- a. Standard form
 b. Introducing slack/surplus variables
 Phase 1
- c. Introducing new artifical variables and change objective func.
- d. Creating table
- e. Pivot variable
- f. Creating a new table (+checking optimality)
- g. Identifying initial BFS Phase 2
- h. Dropping the new artifical variables and change back obj.func.
- i. Solve with Simplex

Final solution of the example:

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{s}_1	s ₂	S ₃	b
	0	1	-2/3	1/3	0	1/3
	1	0	-1/3	-1/3	0	2/3
	0	0	2	-1	1	1
Ph. II.	0	0	4	1	0	-5
			Optimality	y reached		

Original task:

Maximize (-Z) = $-6x_1 - 3x_2$ Subject to $x_1 + x_2 - s_1 = 1$ $2x_1 - x_2 - s_2 = 1$ $3x_2 + s_3 = 2$

 $x_1, x_2, s_1 s_2, s_3 \ge 0$

Solution:

 $Max(-Z) = -5 \rightarrow Min Z = 5$ Subject to $x_1 = 2/3$ $x_2 = 1/3$ $s_3 = 1$

 $S_1 = S_2 = 0$

a. Standard formb. Introducing slack/surplus variables

Phase 1

- c. Introducing new artifical variables and change objective func.
- d. Creating table
- e. Pivot variable
- f. Creating a new table (+checking optimality)
- g. Identifying initial BFS Phase 2
- h. Dropping the new artifical variables and change back obj.func.
- *i.* Solve with Simplex

Solve the following LPP:

Maximize
$$Z = 2x_1 + 3x_2 + 4x_3$$

Subject to
 $3x_1 + 2x_2 + x_3 \le 10$
 $2x_1 + 3x_2 + 3x_3 \le 15$
 $x_1 + x_2 - x_3 \ge 4$
and $x_1, x_2, x_3 \ge 0$

a. Standard form b. Introducing slack/surplus variables Phase 1

- c. Introducing new artifical variables and change objective func.
- d. Creating table
- e. Pivot variable
- f. Creating a new table (+checking optimality)
- g. Identifying initial BFS Phase 2
- h. Dropping the new artifical variables and change back obj.func.
- *i.* Solve with Simplex

Step a,b – Standard form+Introducing slack/surplus variables

a. Standard formb. Introducing slack/surplus variables

Maximize Z = $2x_1 + 3x_2 + 4x_3$ Subject to $3x_1 + 2x_2 + x_3 \le 10$ $2x_1 + 3x_2 + 3x_3 \le 15$

 $x_1 + x_2 - x_3 \ge 4$ and $x_1, x_2, x_3 \ge 0$ Maximize $Z = 2x_1 + 3x_2 + 4x_3$ Subject to $3x_1 + 2x_2 + x_3 + s_1 = 10$ $2x_1 + 3x_2 + 3x_3 + s_2 = 15$ $x_1 + x_2 - x_3 - s_3 = 4$

and $x_1, x_2, x_3, s_1, s_2, s_3 \ge 0$

Step c – Introducing new artifical variables and change the objective function

Maximize $Z = 2x_1 + 3x_2 + 4x_3$ Subject to

> $3x_{1} + 2x_{2} + x_{3} + s_{1} = 10$ $2x_{1} + 3x_{2} + 3x_{3} + s_{2} = 15$ $x_{1} + x_{2} - x_{3} - s_{3} = 4$ and $x_{1}, x_{2}, x_{3}, s_{1} s_{2}, s_{3} \ge 0$

Minimize y_1 $3x_1 + 2x_2 + x_3 + s_1 = 10$ $2x_1 + 3x_2 + 3x_3 + s_2 = 15$ $x_1 + x_2 - x_3 - s_3 + y_1 = 4$ and $x_1, x_2, x_3, s_1, s_2, s_3 \ge 0$

a. Standard form

c. Introducing new

d. Creating table

e. Pivot variable

f. Creating a new table

q. Identifying initial BFS

(+checking optimality)

slack/surplus variables

artifical variables and

change objective func.

b. Introducing

Phase 1

- Step d Creating the table (initial table of Phase 1)
 •coefficients corresponding to the linear constraint variables
 - •coefficients of the objective functions (same as in case of Simplex related to Phase 2; write the objective in terms of non-basic variables related to Phase 1: (-1) in the columns of y_i , converted to 0 by row operations)

Original objective function:

Objective function of Phase 1:

Maximize $Z = 2x_1 + 3x_2 + 4x_3 - 4$

Phase 1

- c. Introducing new artifical variables and change objective func.
- d. Creating table
- e. Pivot variable
- f. Creating a new table
 - (+checking optimality)
- g. Identifying initial BFS

Step e - •Iden colun (beca the ro (indic const colur	– Identifying number of the ause we ow of the cator: dist traints be number of the cator of t	w); in e	 Phase 1 c. Introducing new artifical variables and change objective func. d. Creating table e. Pivot variable f. Creating a new table (+checking optimality) g. Identifying initial BFS 							
	x ₁	x ₂	x ₃	\mathbf{s}_1	\mathbf{s}_2	\mathbf{s}_3	y ₁	b	Indicator	
	3	2	1	1	0	0	0	10	10/3 ←	
	2	3	3	0	1	0	0	15	15/2	
	1	1	-1	0	0	-1	1	4	4/1	
Ph. II.	-2	-3	-4	0	0	0	0	0		
Ph. I.	1	1 1 −1 0 0 −1 0 4 non-r ind								

Highest pos. value (optional if x_1 or x_2)

Step f – *Creating the new table (+check optimality)*

- I. To optimize the pivot variable, it will need to be transformed into a unit value (value of 1)
- II. The other values in the column containing the unit value have to become zero
- III. During this, the table have to be kept equivalent

		x ₁	x ₂	x ₃	\mathbf{s}_1	\mathbf{s}_2	\mathbf{s}_3	$\mathbf{y_1}$	b	
The initial table		3	2	1	1	0	0	0	10	
		2	3	3	0	1	0	0	15	
		1	1	-1	0	0	-1	1	4	
-	Ph. II.	-2	-3	-4	0	0	0	0	0	'
-	Ph. I.	1	1	-1	0	0	-1	0	4	,
-		7								
Old pive	ot column	x ₁	x ₂	x ₃	\mathbf{s}_1	\mathbf{s}_2	\mathbf{s}_3	$\mathbf{y_1}$	b	New
		1	2/3	1/3	1/3	0	0	0	10/3	pivot row
The new table:		0	5/3	7/3	-2/3	1	0	0	25/3	proceed
		0	1/3	-4/3	-1/3	0	-1	1	2/3	
	Ph. II.	0	-5/3	-10/3	2/3	0	0	0	20/3	-
	Ph. I.	0	(1/3)	-4/3	-1/3	0	-1	0	2/3	-
		Not	optin	nal yet					24	

Step e	e (again) – Identifying the pivot variable
•Ide	entifying pivot variable using the table: in the
colu	umn of the highest positive value in bottom row
(be	cause we are minimizing now, not maximizing); in
the	row of the smallest non-negative indicator
(inc	licator: divide the beta values of the linear
con	straints by their corresponding values from the
colu	umn containing the possible pivot variable)

Phase 1

- c. Introducing new artifical variables and change objective func.
- d. Creating table
- e. Pivot variable
- f. Creating a new table (+checking optimality)g. Identifying initial BFS

	\mathbf{x}_1	x ₂	\mathbf{s}_1	\mathbf{s}_2	\mathbf{s}_3	$\mathbf{y_1}$	\mathbf{y}_2	b	Indicator
	1	2/3	1/3	1/3	0	0	0	10/3	5
	0	5/3	7/3	-2/3	1	0	0	25/3	5
	0	1/3	-4/3	-1/3	0	-1	1	2/3	2 ←
Ph. II.	0	-5/3	-10/3	2/3	0	0	0	20/3	
Ph. I.	0	1/3	-4/3	-1/3	0	-1	0	2/3	Smallest ¹ non-negative
		i Highest valu	pos. e						indicator

Step f – *Creating the new table (+check optimality)*

- I. To optimize the pivot variable, it will need to be transformed into a unit value (value of 1)
- II. The other values in the column containing the unit value have to become zero
- III. During this, the table have to be kept equivalent

		\mathbf{x}_1	x ₂	x ₃	\mathbf{s}_1	\mathbf{s}_2	\mathbf{s}_3	$\mathbf{y_1}$	b	
The initial table			2/3	1/3	1/3	0	0	0	10/3	
		0	5/3	7/3	-2/3	1	0	0	25/3	
		0	1/3	-4/3	-1/3	0	-1	1	2/3	
-	Ph. II.	0	-5/3	-10/3	2/3	0	0	0	20/3	
-	Ph. I.	0	1/3	-4/3	-1/3	0	-1	0	2/3	
Old piv	vot column	x ₁	x ₂	x ₃	$\mathbf{s_1}$	s ₂	s ₃	\mathbf{y}_1	b	
		1	0	3	1	0	2	-2	2	
The new table:		0	0	9	1	1	5	-5	5	Νοω
	_	0	1	-4	-1	0	-3	3	2 <	nivot row
	Ph. II.	0	0	-10	-1	0	-5	5	10	prociow
	Ph. I.	0	0	0	0	0	0	-1	0	
			Ont	imalit	v read	ched				

Step g– *Identifying initial BFS*

•Basic variable: have a single 1 value in its column and the rest are zeros; the row that contains the 1 value will correspond to the beta value. The beta value will represent the optimal solution for the given variable

•Non-basic variable: the remaining variables; the optimal solution of the non-basic variables is zero

	\mathbf{x}_1	x ₂	x ₃	s ₁	s ₂	S ₃	y ₁	b
	1	0	3	1	0	2	-2	2
	0	0	9	1	1	5	-5	5
	0	1	-4	-1	0	-3	3	2
Ph. II.	0	0	-10	-1	0	-5	5	10
Ph. I.	0	0	0	0	0	0	-1	0

Phase 1

- c. Introducing new artifical variables and change objective func.
- d. Creating table
- e. Pivot variable
- f. Creating a new table
 - (+checking optimality)
- g. Identifying initial BFS

Initial BFS:	
<i>x</i> ₁ = 2	s ₃ = 0
<i>x</i> ₂ = 2	<i>y</i> ₁ = 0
<i>x</i> ₃ = 0	
<i>s</i> ₁ = 0	
s ₂ = 5	

Step h – Dropping the new artifical values and change back objective function

•Drop the columns of the new artificial variables and the row corresponding to the objective of the first phase

- a. Standard form
 b. Introducing slack/surplus variables
 Phase 1
- c. Introducing new artifical variables and change objective func.
- d. Creating table
- e. Pivot variable
- f. Creating a new table (+checking optimality)
- g. Identifying initial BFS Phase 2
- h. Dropping the new artifical variables and change back obj.func.
- *i.* Solve with Simplex

Step h – Solve with Simplex Method

•As we included the original objective as an added row in the tables of phase 1, it is in the right form

•Since we have the initial table, we check for optimality (are there any negative values in the bottom row related to the variables?)

•If no: we have reached optimality, identify optimal values

•If yes: Choose pivot, create new table, check optimality again, and so on.

	x ₁	x ₂	x ₃	\mathbf{s}_1	\mathbf{s}_2	\mathbf{s}_3	b
	1	0	3	1	0	2	2
	0	0	9	1	1	5	5
	0	1	-4	-1	0	-3	2
Ph. II.	0	0	(-10)	-1	0	-5	10
				lot op	otimal	yet	

- a. Standard form
 b. Introducing slack/surplus variables
 Phase 1
- c. Introducing new artifical variables and change objective func.
- d. Creating table
- e. Pivot variable
- f. Creating a new table (+checking optimality)
- g. Identifying initial BFS Phase 2
- h. Dropping the new artifical variables and change back obj.func.
- i. Solve with Simplex

Step •	h — Solu Pivot varia	<i>/e Wi</i> ble: 9	ith Sin (in colu	nplex i mn of x	Metha 3, secon	od id row)			a. Standard form b. Introducing
The ol	d table	x ₁ 1 0 0	x ₂ 0 0 1	x_3 3 9 -4	s ₁ 1 1 -1	s ₂ 0 1 0	s ₃ 2 5 -3	b 2 5 2	slack/surplus variables Phase 1 c. Introducing new artifical variables and change objective func.
	Ph. II.	0	0	-10	-1	0	-5	10	d. Creating table e. Pivot variable f. Creating a new table
The n	ew table	x ₁ 1 0 0 0	x ₂ 0 0 1 0	x₃ 0 1 0 0	s ₁ 2/3 1/9 -5/9 1/9	s ₂ -1/3 1/9 4/9 10/9	s ₃ 1/3 5/9 -7/9 5/9	b 1/3 5/9 38/9 140/9	 (+checking optimality) g. Identifying initial BFS Phase 2 h. Dropping the new artifical variables and change back obj.func. i. Solve with Simplex
)		Opti	mality	/ reac	hed			30

Final solution of the example:

	\mathbf{x}_1	\mathbf{x}_2	x ₃	s_1	\mathbf{s}_2	s ₃	b
	1	0	0	2/3	-1/3	1/3	1/3
	0	0	1	1/9	1/9	5/9	5/9
	0	1	0	-5/9	4/9	-7/9	38/9
Ph. II.	0	0	0	1/9	10/9	5/9	140/9

Original task: Maximize $Z = 2x_1 + 3x_2 + 4x_3$ Subject to $3x_1 + 2x_2 + x_3 + s_1 = 10$ $2x_1 + 3x_2 + 3x_3 + s_2 = 15$ $x_1 + x_2 - x_3 - s_3 = 4$ and $x_1, x_2, x_3, s_1 s_2, s_3 \ge 0$

Solution:

Max Z = 140/9Subject to $x_1 = 1/3$ $x_2 = 38/9$ $x_3 = 5/9$ $s_1 = s_2 = s_3 = 0$

and $x_1, x_2, s_1, s_2 \ge 0$

Sensitivity of the solutions and the shadow prices

Let's investigate the following linear problem: Maximize $Z = x_1 + x_2$ Subject to $x_1 + 2x_2 \le 6$ $x_1 - x_2 \le 3$ and $x_1, x_2 \ge 0$ Standard form Maximize $Z = x_1 + x_2$ Subject to $x_1 + 2x_2 + s_1 = 6$ $x_1 - x_2 + s_2 = 3$

Initial Simplex table:

Sensitivity of the solutions and the shadow prices

Table 2:

	x ₁	x ₂	\mathbf{s}_1	\mathbf{s}_2	Ζ	b	
	0	3	1	-1	0	3	
	1	-1	0	1	0	3	
	0	-2	0	1	1	3	
		Not o	optimal	yet			
lable 3:							
	\mathbf{x}_1	x ₂	\mathbf{s}_1	\mathbf{s}_2	Ζ	b	
	0	1	1/3	-1/3	0	1	
	1	0	1/3	2/3	0	4	
	0	0	2/3	1/3	1	5	
		Optir	nality re	eached			

Solution: Max(Z) = 5; $Subject to: x_1 = 4$; $x_2 = 1$; $s_1 = 0$; $s_2 = 0$

Sensitivity of the solutions and the shadow prices

Lets investigate the following linear problem: Maximize $Z = x_1 + x_2$ Standard form Subject to Maximize $Z = x_1 + x_2$ $x_1 + 2x_2 \le 6 + \pi_1$ Subject to $x_1 - x_2 \le 3 + \pi_2$ and $x_1, x_2 \ge 0$

b Ζ \mathbf{X}_1 \mathbf{S}_1 \mathbf{S}_2 \mathbf{X}_{2} 2 1 0 0 1 $6+\pi_1$ 1) 0 1 -1 0 $3+\pi_{2}$ -1 -1 0 0 1 0 Not optimal yet

Sensitivity of the solutions and the shadow prices

Table 2:

	x ₁	x ₂	\mathbf{s}_1	\mathbf{s}_2	Ζ	b
	0	3	1	-1	0	$3 + \pi_1 - \pi_2$
	1	-1	0	1	0	3+π ₂
-	0	-2	0	1	1	$3+\pi_2$
Table 3:		Not	optima	yet		Ι
	x ₁	x ₂	\mathbf{s}_1	\mathbf{s}_2	Ζ	b
	0	1	1/3	-1/3	0	$1+\pi_1/3-\pi_2/3$
	1	0	1/3	2/3	0	$4 + \pi_1/3 + 2\pi_2/3$
-	0	0	2/3	1/3	1	$5+2\pi_1/3+\pi_2/3$
		Optir	mality re	eached		
	S	olution	: Max(Z	() = 5 + 2	$2\pi / 3 +$	Shadow prices π_3
Subject to	$x_1 = 4$	$1 + \pi_1/3$	$+ 2\pi_2/3$	$s_{i} = 1$	$+\pi_1/3$	$-\pi_2/3; s_1 = 0; s_2 = 0$

Introduction to Duality Theory

- In case of every linear program, we can find another linear program strongly related to it
- These two linear programs should be handled as a pair
- In this case we should call the first linear program the primal program and the second linear program the dual program
- Importance of the duality
 - It can be decided whether a feasible solution is optimal
 - In some cases the dual problem is easier to solve

36

Connection between minimization and maximization linear programs:

Primal program:	Dual program:	
min <u>c*x</u>	max <u>y</u> * <u>b</u>	In case of a primal
subject to	subject to	program and its' dual:
$\underline{\underline{A}}^* \underline{\underline{x}} \ge \underline{b}$	$\underline{\mathbf{v}}^*\underline{\mathbf{A}} \leq \mathbf{c}$	min <u>c*x</u> = max <u>y*b</u>
$\underline{x} \ge 0$	<u>y</u> ≥ 0	

where <u>x</u> is a column vector with *n* elements (primary variables), <u>y</u> is a row vector with *m* elements (dual variables; optimal dual variables=shadow prices), <u>A</u> is an *m* x *n* matrix, <u>c</u> is a row vector with *n* elements, and <u>b</u> is a column vector with *m* elements.

Duality Theorem

- The following are the only possible relationships between the primal and dual problems
 - If one problem has feasible solutions and a bounded objective function (and so has an optimal solution), then so does the other problem, so both the weak and strong duality properties are applicable
 - If one problem has feasible solutions and an unbounded objective function (and so no optimal solution), then the other problem has no feasible solutions
 - If one problem has no feasible solutions, then the other problem has either no feasible solutions or an unbounded objective function

Shadow price (dual price): The optimal value of the dual variables. It gives the improvement in the objective function if the constraint is relaxed by one unit. A shadow price is reported for each constraint.

- •In the case of a less-than-or-equal constraint, such as a resource constraint, the shadow price gives the value of having one more unit of the resource represented by that constraint.
- •In the case of a greater-than-or-equal constraint, such as a minimum production level constraint, the shadow price gives the cost of meeting the last unit of the minimum production target.
- •The units (dimensions) of the shadow prices are the units of the objective function divided by the units of the constraint. Knowing the units of the dual prices can be useful when you are trying to interpret what the dual prices mean.

Lets investigate a production process:

We produce breads (x_1) , and cakes (x_2) . Unit profit of a bread is 5 Ft, unit profit of a cake is 6 Ft. Resources of the production process are flour, water and salt. The dimensions of the resources in the primal program are dkg/piece in case of the flour (a_{11}, a_{12}) , l/piece in case of the water (a_{21}, a_{22}) and g/piece in case of the salt (a_{31}, a_{32}) . Resources are limited, we have 200 dkg flour, 100 I water and 500 g salt. We need 2 dkg flour, 1 I water and 3 g salt to produce a bread, while 2 dkg flour, 2 I water and 1 g salt to produce a cake.

The aim of us is to determine, how much breads and cakes we have to product from our resources, to maximize our total profit (π) based on the unit profit (p_1 , p_2) of a cake and a bread considering the available resources (c).

The introduced example can be written as the following linear problem:

If we solve this problem, we get the following solution: $x_1 = 100$ piece; $x_2 = 0$ piece; $\pi = 500$ Ft.

Now, lets determine the dual program of this example.

Generally:
Primal program:
min <u>cx</u>
subject to
$\underline{Ax} \ge b$
$\underline{x} \ge 0$

Dual program: max \underline{vb} subject to $\underline{vA} \le c$ $\underline{y} \ge 0$

The introduced example: Maximize $p_1x_1 + p_2x_2$ Subject to $x_1^*a_{11}+x_2^*a_{12} \le c_1$ $x_1^*a_{21}+x_2^*a_{22} \le c_2$ $x_1^*a_{31}+x_2^*a_{32} \le c_3$ and $x_1, x_2 \ge 0$ The corresponding dual program: Minimize $c_1y_1 + c_2y_2 + c_3y_3$ Subject to $y_1^*a_{11} + y_2^*a_{21} + y_3^*a_{31} \ge p_1$ $y_1^*a_{12} + y_2^*a_{22} + y_3^*a_{32} \ge p_2$ and $y_1, y_2, y_3 \ge 0$

Units (dimensions):

```
In case of A: [a_{11},a_{12}] = dkg/piece; [a_{21},a_{22}] = l/piece; [a_{31},a_{32}] = g/piece
In case of p: [p_1,p_2] = Ft/piece
In case of c: [c_1] = dkg; [c_2] = l; [c_3] = g
```

```
In case of <u>x</u>: [x_1, x_2] = piece
[Objective function in primal program]=
=(Ft/piece) * (piece)+ (Ft/piece) * (piece) = Ft
```

The corresponding dual program: Minimize $c_1y_1 + c_2y_2 + c_3y_3$ Subject to $y_1^*a_{11} + y_2^*a_{21} + y_3^*a_{31} \ge p_1$ $y_1^*a_{12} + y_2^*a_{22} + y_3^*a_{32} \ge p_2$ and $y_1, y_2, y_3 \ge 0$

We only need the units of <u>y</u> at this point. Lets look at the units of the constraining inequalities of the dual program: $[y_1] * (dkg/piece) + [y_2] * (l/piece) + [y_3] * (g/piece) \ge Ft/piece$

So, in case of <u>y</u> the units must be: $[y_1] = Ft/dkg; [y_2] = Ft/l; [y_3] = Ft/g$ Therefore, [Objective function in dual program]= =(Ft/dkg) *(dkg) + (Ft/l) *(l) + (Ft/g) *(g) = Ft (of course the same as in case of primal)

The dual program: Minimize $c_1y_1 + c_2y_2 + c_3y_3$ Subject to $y_1^*a_{11} + y_2^*a_{21} + y_3^*a_{31} \ge p_1$ $y_1^*a_{12} + y_2^*a_{22} + y_3^*a_{32} \ge p_2$ and $y_1, y_2, y_3 \ge 0$

Minimize $200y_1 + 100y_2 + 500y_3$ Subject to $2y_1 + y_2 + 3y_3 \ge 5$ $2y_1 + 2y_2 + y_3 \ge 6$ and $y_1, y_2, y_3 \ge 0$

If we solve this problem, we get the following solution:

y₁ = 1,222 Ft/dkg; y₂ = 1,622 Ft/l; y₃ = 0,311 Ft/g; minimum of obj.func= 500 Ft.

These are the shadow prices (the optimal values of dual variables) .

Conversion of Primal Program of the WYNDOR GLASS Co problem to Dual Program

This is the defined primal task. Determine and solve the dual of it in Excel!

```
Max Z=4x_1 + 5x_2 + x_3
Subject to
3x_1 + 2x_2 \le 10
x_1 + 4x_2 \le 11
3x_1 + 3x_2 + x_3 \le 13
and x_1, x_2, x_3 \ge 0
```


BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS

Dr. Tibor SIPOS Ph.D. Anteneh AFEWORK Zsombor SZABÓ

email: sipos.tibor@mail.bme.hu

BME FACULTY OF TRANSPORTATION ENGINEERING AND VEHICLE ENGINEERING 32708-2/2017/INTFIN COURSE MATERIAL SUPPORTED BY EMMI