Transport operation

Railline capacity analysis
 (by the calculation method of DB)

Faculty of Transportation Engineering and Vehicle Engineering
Department of Transportation Technology and Economics

Timetable

- Operation plan of the rail network
- Defines all train movements
- Defines and coordinates the work plans of the services and workplaces related to the railtraffic

Grafical timetable presentation

Timetable variations Clock-face scheduling

- Integrated: includes all lines/routes/route-types even for other transport modes (train-bus-ship)
- Periodic: route types depart by same period
- Symmetrical:
- In time: same route-types crosses each other at whole hour (and at half-hours)
- In space: different route-types' crosses placed at the same station (hub)
- Result: optimal interchange system

Timetable variations Clock-face scheduling

- Hourly recurring traffic situation
- Passengers can memorise the timetable easier
- Hourly trains (buses) can be competitive with private transport
- Provides more efficient usage of personnel, infrastructure and vehicles
- More effective resource planning

Timetable variations Integrated timetable

Makes easier the travelling, because where we get off the train, we know:

- When a train departs to the same direction (after 1 hour)
- When a train departs to the opposite direction (after 2τ minutes)
- There are connections within minutes (if we are in a hub)

Timetable variations Integrated timetable

Timetable variations Integrated timetable

Timetable variations Integrated timetable

Allows the timetable based infrastructure development:

- All hubs need to be located 30 (or 60) minutes from each other
- Two solutions:
- Increase track velocity
- Increase the number of the tracks (at least in some sections)

CAPACITY CALCULATION

Time requirement of follow-up and crossing

Capacity calculation

Defining the theoretic productive time base (t_{p})

Theoretical capacity values

- Daily utilisation rate:

$$
\eta=\frac{t_{p}}{1440}(\%)
$$

- Theoretic number of trains between the stations:

$$
N_{\max }=\frac{N}{\eta}(\text { train } / d a y)
$$

Reserve time

Practical capacity values

- Practical utilisation rate:

$$
\eta_{p}=\frac{t_{p}+N * r}{1440}(\%)
$$

- Practical number of trains between the stations:

$$
N_{p}=\frac{N}{\eta_{p}}(\operatorname{train} / d a y)
$$

Available reserve time

- Available reserve time:

$$
r_{a}=\frac{1440-t_{p}}{N}(\min)
$$

TASK

Description

- Passenger trains run hourly between stations , A^{\prime} and , B^{\prime} adjusted to an integrated timetable. (There are no other trains between the two stations.)
- The timetable operates every day between 4 AM and midnight.
- Travel time between the two stations is t_{t} minutes.
- Trains from , A^{\prime} to,B^{\prime} depart τ minutes after the hour.

Data

$-t_{t}=5+$ (first character of the Neptun-code)	$\begin{array}{ll} \cdot & \text { A-1 } \\ - & \text { B-2 } \\ - & \text { C-3 } \end{array}$	$\begin{aligned} & \text { • } \\ & \text { • } \\ & \text { - }-14 \\ & \text { - } \\ & \hline \end{aligned}$
$-\tau=$ (second character of the Neptun-code)	- D-4	- Q-17
$-\mathrm{T}_{\mathrm{c}}=2$ minutes	- F-6	S-19
$-\mathrm{r}=2$	- G-7	$\begin{array}{rr} \cdot & \mathrm{T}-20 \\ \cdot & \mathrm{U}-21 \end{array}$
- 3 min , if Σ Neptun-code is even (only the numbers)	$\begin{aligned} & \text { I-9 } \\ & \text { J-10 } \end{aligned}$	- $\begin{aligned} & \text { V-22 } \\ & \text { - } \\ & \text { W-23 }\end{aligned}$
- 5 min , if Σ Neptun-code is	K-11	-$\mathrm{X}-24$
odd (only the numbers)	- $\begin{aligned} & \text { L-12 } \\ & \text { - }\end{aligned}$	

!!! If $2 * t_{t}+2^{*} \tau+T_{c}>60$, double track !!!

Tasks

Draw:

- Timetable between 13:30PM and 16:30PM
- Calculate:

1) Daily number of trains (N)
2) t_{p}
3) η
4) $N_{\text {max }}$
5) η_{p}
6) N_{p}
7) r_{a}
