Budapest University of Technology and Economics Faculty of Transportation Engineering and Vehicle Engineering Department of Transport Technology and Economics

SH Transport operation course BMEKOKUM206

Basics of transport network planning

Traffic simulation – transport modeling Miklós KÓZEL

St. 426

kozel.miklos@mail.bme.hu

<u>www.kukg.bme.hu</u>

Contents

- Necessity and basics of network planning
- The process of network planning four-step modeling
- Necessity and levels of transport modeling
- Examples of modeling tools and possible outcomes

1. Necessity and basics of network planning

- The parts of the transport system:
 - Vehicles
 - Object of transportation (goods or persons)
 - Network
 - nodes
 - and links
- The point of the network planning is:

To create an <u>optimum network</u> (infrastructure) for handling transportation demands (both freight- and passenger transport)

Needed: 1: detailed examination of the current traffic (e.g traffic counts),2: detailed knowledge about the demands (number of potential traffic volumes), and 3: prediction to the future

Network planning is a tool

Four step modeling (FSM) is the most common

1. Necessity and basics of network planning

- The basic <u>questions</u> of network planning
 - "What is the appropriate route of bus line Nr. 7?" ^(c)
 for an answer we need: how many people, in what relations, on which route will travel in the future
 - HOW MANY? (who or what, how many times (in aggregate)?) *magnitude of total daily travel from origin zones*
 - IN WHAT RELATIONS? TO WHERE?

how does the generated traffic divided between zones

- BY WHAT? WHAT KIND OF TRANSPORTATION MODE IS CHOSEN? share of each transportation mode (e.g. private riders, bus transport, on foot) from the traffic
- WHERE? ON WICH ROUTE?

assignment of traffic volumes to particular routes (,, connection" of the demand to the network)

2. The four-step modeling (FSM)

- **1.** <u>**Trip generation:**</u> determines the frequency of origins or destinations of daily trips in each zone (Q_i, Z_i) *"how many"*
- 2. <u>Trip distribution:</u> matches origins with destinations (f_{ij}, f_{ji}) *"to where"*
- 3. Mode choice: splits the trips between transportation modes $(f_{ij}^{PuT}, f_{ij}^{PrT})$, by what'
- 4. **Route assignment:** allocates each trip to a particular route *"which route"*

2. The four-step modeling (FSM)

 $\begin{array}{c} \mathbf{Q}_{i} \quad \mathbf{Z}_{i} \\ \mathbf{f}_{ij} \quad \mathbf{f}_{ji} \\ \mathbf{f}_{ij}^{\mathbf{PuT}} \quad \mathbf{f}_{ij}^{\mathbf{PrT}} \end{array}$

3. Necessity of transport modeling

- The <u>aim</u> of transport modeling (simulation) is to <u>predict the expected</u> <u>results</u> of the planned measure during
 - implementation of a new system (investment, strategic),
 - improvement of an existing system,
 - control (operational, real time).
- The most important parts of modeling are to
 - set up (build up),
 - calibrate $(\sum (f_{ij}, model f_{ij}, measured)^2 \longrightarrow min.! (verified network),$
 - and maintain the modell.

based on:

- traffic (demand), network (supply), and time profile datas.
- Efficient way to forecast traffic demands, volumes, situations or other parameters (e.g. pollution) in the future

3. Necessity of transport modeling

- By the use of modeling techniques investments can be examined in advance, like
 - different traffic situations can be examined at low cost,
 - it gives the opportunity for testing the effects of planned changes on the network (e.g. adding new elements, changing traffic system, etc.) before construction,
 - it makes possible to compare different plan versions,
 - it helps to examine the system in extreme situations.

3. Levels of transport modeling

• According to elaboration models can be categorized as the following

• Macroscopic:

- Modeling traffic volumes and parameters
- Examining cities, countries or large areas
- Applied to test network plans or forecast future traffic parameters
- Based on route assignments (and FSM)
- (Mesoscopic)
- Microscopic:
 - Modeling each vehicle and pedestrian
 - Examining junctions or small areas
 - Applied to try new traffic systems (constructions) and meet traffic situations in details

Less plan horizon More detailed datas

3. Levels of transport modeling

Macroscopic transport model

- The aim: define (forecast) loads/volumes/demands on links or other network elements
 - Examines whole cities or regions (or even countries) long horizon
 - Does not care about specific vehicles (individuals) or time segments (static)
 - Splits the examined area to zones and symbolizes the network with a graph
 - Based on the FSM it supports the four-step modeling method, especially route assignment
- 3 input data group:
 - traffic demands OD matrices (demand between origin and destination zones)
 - transport system (map, network, links and nodes and its parameters)
 - routing preferences (weights e.g. for transfers)

3. Levels of transport modeling

Microscopic transport model

- The aim: simulates the behavior of vehicles and drivers independently, used to predict performance of a part of the network (single node or couple of nodes and links)
 - Examines smaller part of the network, based on vehicles
 - All the vehicles and its movements can be simulated
 - Driving behaviors and traffic rules are considered as well
 - It is like a ,,virtual world" capacity and utilization of an intersection can be examined
- 3 input data group:
 - traffic demands OD flows in the junction, number of vehicle in each categories
 - transport system (geometry, control, signal plan, etc.)
 - routing preferences (driving style, overtaking maneuvers and habits, etc.)

4. Examples of transport modeling

- Setting up a macroscopic model:
 - For a simulation it is necessary to
 - build up the network nodes (intersection or a stop), links (roads or PuT lines), zones, connectors, turning possibilities)
 - connect traffic demands (between zones) to the model

Building up the model

4. Examples of transport modeling

- Setting up a macroscopic model:
 - For simulation it is necessary to
 - build up the network nodes (intersection or a stop), links (roads or PuT lines), zones, connectors, turning possibilities)
 - connect traffic demands (between zones) to the model
 - The route assignment consists if the following:
 - route assignment = routing + assignment (taking capacity into consideration or not)
 - Routing: finding the route that has the least sum of weights between two nodes on the graph – there are many known algorithms for this
 - Assignment: based on weight (or resistance) of connectors/nodes/links: travel time, cost, or complex parameters - a route that has less weight get more traffic assigned
 - Assignment procedures: incremental, equilibrium, stochastic, tribut, etc.

Example 1: PuT supply examination (static) (sample network, accessibility (400 meters))

Example 2: Bypass examination in Pécs (road construction for PrT, absolute traffic volumes)

Example 3: PuT development in Budapest (rail connection to the 17th district, differences in traffic volumes)

4. Examples of transport modeling

- Setting up a microscopic model:
 - For a simulation static and dynamic datas are necessary
 - static datas belongs to the infrastructure (links, stop lines, width of lanes, place of traffic lights, etc.)
 - dynamic datas are for the simulation (traffic volume, number of vehicles and categories, split by quarters and directions)

Building up the model

									105 s						
Signal group	Init	Term	GT	£	11		20	30	40	50	60	70	80	90	CT=10 100
1J 🕌	1	52	49	1						52					-
2.1	78	95	15	-	-	_	-			_	_	_	20		
3J 🕂	16	72	54	-		15						72	-		
41 14	78	92	12	-		-	-			_			70	92	
5J 🛹	98	7	12	┣	70						_				98
81	61	70	7	-							61	70			_
IJĮ	78	10	35	┣	- 0						_		78		_
8gy [79	89	10	-		_	-			_	_		24	88	
9gy +++	18	48	30	-		10	-	-		-					
10gy 📫	79	89	10	-	-		-	-	-				79	85	
11gy	1	31	30	1-		-	-	31			_			_	
12sg •	79	98	19	-		-	-						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\sim	V.1
13sg •	79	98	19	\vdash		-	-							\sim	Wi-
							dama.			1			Lesson in the		

4. Examples of transport modeling

- Setting up a microscopic model:
 - For simulation static and dynamic datas are necessary
 - static datas belongs to the infrastructure (links, stop lines, width of lines, place of traffic lights, etc.)
 - dynamic datas are for the simulation (traffic volume, number of vehicles and categories, split by quarters and directions)
 - Also taken into consideration during simulation
 - Human behavior and vehicle parameters (e.g. acceleration ability)
 - Physical conditions, traffic rules (e.g. priority rules like stop sign)
 - Interaction between vehicles (drivers)
 - Reactions of the planned traffic control system
 - Stochastic effects during moving from the entering point to exit point
 - Necessary datas are continuously collected during simulation (delay time, length of queues, number of stops, travel time, emission, etc.)

Example 2: Examination of PuT prioritization (Szeged, 3D)

Example 2: Examination of PuT prioritization (Szeged, 3D)

unu summun

Example 3: Advanced visualization (Budapest, 3D, built environment)

Example 4: Pedestrian flow modeling (M4 Móricz Zsigmond körtér, station gating)

Thank you for your kind attention!

Miklós KÓZEL kozel.miklos@mail.bme.hu

11th November 2019.