Transport Operation Introduction of on-field measurement 2

Public transport vehicle occupancy, time parameters

Faculty of Transportation Engineering and Vehicle Engineering Department of Transport Technology and Economics

Schedule

Week	Date	Subject	Place
1	11 Sept	NO CLASS	St 320
2	18 Sept	Introduction, editing requirements of reports	St 320
3	25 Sept	Presentation of on-field measurement 1 (Safety level)	Road intersection
4	2 Oct	(1) Safety level examination of road traffic	St 320
5	9 Oct	Presentation of on-field measurement 2 (Occupancy)	PuT stops
6	16 Oct	(2) Examination of public transport vehicle occupancy and time parameters	St 320
7	23 Oct	National holiday - no class	Road intersection
8	30 Oct	Presentation of on-field measurement 3 (Intersection)	St 320
9	6 Nov	(3) Traffic survey at a road intersection	PuT route
10	13 Nov	Presentation of on-field measurement 4 (GPS)	St 320
11	20 Nov	(4) Examination of public transport circulation with GPS device	St 320
12	27 Nov	In-class exercise 1: Tram tachograph data analysis	
13	4 Dec	In-class exercise 2: Rail line capacity analysis	
14	11 Dec	Site visit /Consultation	

1. Public transport vehicle occupancy

 measured by „pattern technique" - good to know- The aim:
\square numerate the number of passengers not in a PuT stop but at a cross section
(passenger/vehicle, passenger/hour)
\square specify time parameters like dwell time and running time (punctuality)
- Measurement time:
\square 8:30-9:30 (Gr.No.: 1-11)

Belváros

1. Public transport vehicle occupancy

 measured by „pattern technique" - good to know- The measurement take place at:
\square PuT stops along the route of tram No. 41, in both directions
- One person/"stop"/direction
- All the lines (that serves the particular stop) and its vehicles should be measured
- Record exact time values (based on seconds)
\square timer or by phone (be offline)
- 1 report each group

Szentimreváros

Groups - Assignment

No.	Students	Stop	Direction
$\mathbf{1}$	Farias Chaves Quirino Yasmin	Hauszmann Alajos utca	North (dep)
	Fatma Dilek Gamlı		
$\mathbf{2}$	Malek Alkhatatne	Csonka János tér	North (dep)
	Sagidullayeva Slushash		
$\mathbf{3}$	Issa Matalqah	Újbuda-központ M	North (dep)
	Anas Alatawneh		
$\mathbf{4}$	Pathan Zaid Khan	Móricz Zsigmond körtér	North (dep)
	Kevin Armel Sonkeng	M	South (arr)

Groups - Assignment

1. Public transport vehicle occupancy measured by ,"pattern technique" - how to measure

- Positioning to be able to inspect quite well
- Vehicle occupancy based on the sample patterns
($5+$ " $0^{\prime \prime}$ categories)
- Category „0" have to be counted exactly
- Inspection:
\square North: right after departure!
\square South: just before arrival!

Tram occupancy (pattern) categories

1. Public transport vehicle occupancy

 measured by ,"pattern technique" - how to measure■ Pattern category as an average (once below once above)

- Standing passengers vs. empty seats
- Smooth passengers on-board
- Exact number of passengers according to category and type of the tram afterwards!

Type		Capacity (4 passenger/m2)			Pattern category				
		standing	seats	sum	1. cat	2. cat	3. cat	4. cat	5. cat
$\begin{gathered} \stackrel{\infty}{E} \\ \stackrel{\text { ® }}{\mathbf{N}} \end{gathered}$	Ganz, KCsV-7	130	38	168	19	38	82	125	168
	Tatra T5C5, T5C5K	60	26	86	13	26	46	66	86
	TW6000	104	46	150	23	46	81	116	150
	Siemens Combino NF12B	286	64	350	32	64	160	255	350
	CAF Urbos 334 m	154	46	200	23	46	98	149	200
	CAF Urbos 356 m	264	81	345	41	81	169	257	345

2. Occupancy and time parameters - survey sheet

PuT stop and direction								tart: 8:30:00			
	Line			Time moment				Pattern category		Number of passengers	
				Arrival	End of boarding/ alighting	Door closing	Departure from traffic light				
1.	41	T	4105	+1:15	+1:27	+1:34	1:54	"	III	26	46
2.	17	c	2201	+1:50	+1:56	+1:56					
3.			-								
,		,									
Place of measurement				one vehicle journey departure) in each row			on the side as well				
							$\begin{array}{ll} \text { I C C CAF } \\ \text { I } & \text { G - Ganz } \\ \text { I T-Tatra } \end{array}$				
] start on time - exact time va			ue only	the be	ginning						

2. Occupancy and time parameters - survey sheet

elapsed time from beginning in format of [+mm:ss]
end of continuous getting on and off
departure from if the bus stopped at red light

2. Occupancy and time parameters - to evaluate

■ Average headway (by lines/aggregate)
\square time interval between to trams

- Max and min headway (by lines/aggregate)
- Average occupancy (by lines/aggregate)
\square according to the exact number of passengers not the category
- Max and min occupancy (by lines/aggregate)
- Traffic volume [passenger/hour/direction] (aggregate)
- Cycle time (re-departure of the same vehicle)
- Average dwell time (by lines/aggregate)
\square time interval from arrival to door closing
■ + on-field survey sheet attached

Thank you for your kind attention!

Have fun ;)

Miklós KózeL
kozel.miklos@mail.bme.hu

