Transport Operation Introduction of On-field Measurement 3 Traffic Survey at a Road Intersection

Tamás Soltész soltesz.tamas@mail.bme.hu Room St 426.

Faculty of Transportation Engineering and Vehicle Engineering Department of Transport Technology and Economics

Schedule

Week	Date	Subject	Place
1	11 Sept	NO CLASS	
2	18 Sept	Introduction, editing requirements of reports	St 320
3	25 Sept	Presentation of on-field measurement 1 (Safety level)	St 320
4	2 Oct	(1) Safety level examination of road traffic	Road intersection
5	9 Oct	Presentation of on-field measurement 2 (Occupancy)	St 320
6	16 Oct	(2) Examination of public transport vehicle occupancy and time parameters	Public trsp. stops
7	23 Oct	National holiday - NO CLASS	
8	$\mathbf{3 0}$ Oct	Presentation of on-field measurement 3 (Intersection)	St 320
9	$\mathbf{6}$ Nov	(3) Traffic survey at a road intersection	Road intersection
10	$\mathbf{1 3}$ Nov	Presentation of on-field measurement 4 (GPS) c survey	St 320
11	$\mathbf{2 0}$ Nov	(4) Examination of public transport circulation with GPS device	Public trsp. route
$\mathbf{1 2}$	$\mathbf{2 7}$ Nov	In-class exercise 1: Tram tachograph data analysis	St 320
13	$\mathbf{4}$ Dec	In-class exercise 2: Rail line capacity analysis	St 320
$\mathbf{1 4}$	$\mathbf{1 1}$ Dec	Site visit / Consultation	

Traffic survey at a road intersection

- Measurement shifts: two groups

1st: 8:15-9:00
2nd: 9:00-9:45

■ Place of measurement:
\square Intersection of Budafoki Road and Dombóvári Road (A)

- Accessible by:
\square Stop Budafoki út / Dombóvári út: tram 1, buses 33, 133E
$\square 15$ minutes walk ($\sim 1 \mathrm{~km}$ along Budafoki Road)

Lane schedule

$1^{\text {st }}$ time shift, 8:15-9:00		$\underset{\text { 岂 }}{\text { ¢ }}$	$2^{\text {nd }}$ time shift, 9:00-9:45	
Group	Student		Group	Student
1	Farias Chaves Quirino Yasmin	1	7	Manoel Victor Araújo Oliveira
	Fatma Dilek Gamlı	2		Rodrigo Netto de Souza
2	Malek Alkhatatne	3	8	Lucas Gabriel Soares Padre Santos
	Sagidullayeva Slushash	4		André Pessoa Pacheco
3	Issa Matalqah	5	9	Fabian Feiland
	Anas Alatawneh	6		Timo Lederer
4	Pathan Zaid Khan	7	10	Thérèse de Nantes
	Kevin Armel Sonkeng			Sébastien Vieugué
5	Esra'a Husein	8	11	Nils Mielicki
	Muslum Dibirov moxi 24,50 70, 218	9		Erik Drawe
6	Julio Cesar Lopez Lizarraga	10	6	Yahya Aladdin

Traffic survey at a road intersection

- What have to be measured:
\square Number of vehicles in a specific lane,
- Split by quarters (3×15 minutes)
- Split by vehicle categories:

1) Passenger cars+ motorcycles + minibuses (van) + light trucks (1)
2) Medium trucks $(1,4)$
3) Heavy trucks + buses (2)
\square Green time $\left(t_{g r}\right)$ and cycle time (C) of traffic light

- Measurement time (start, end and also the quarters) should be kept accurately

Renault Midliner
Heavy truck (7,5 tons < weight)

Traffic survey sheet

Dept. of Transport Technology and Transport Economics

Analysis of measured data

- Traffic volume in Passenger Car Equivalent (PCE)
\square For each quarter (PCE/15 min)
\square For the whole survey (PCE/hour)
\square Example:

Category	PCE
1	1
2	1.4
3	2

Analysis of measured data

■ Distribution (share) of vehicle categories (for the whole survey time)
\square By the number of vehicles
\square By PCE volumes

- Simplified capacity analysis of the intersection
\square Lane capacity: needed: min. headway ($\left.t_{h w}=2 \mathrm{~s}\right), t_{g r}, \mathrm{C}$ Method: $\quad t_{g r}, C \rightarrow n_{C} \rightarrow T_{\text {gr/ic }} \rightarrow N_{\text {max,1lane }} \rightarrow N_{\text {max }}$

$$
N_{\text {max }, 1 l a n e}=T_{g r / 1 h} / t_{h w}=t_{g r} \cdot n_{c} / t_{h w}=t_{g r} \cdot 3600 /\left(C \cdot t_{h w}\right)
$$

\square Comparison to measured PCE traffic, saturation (traffic/capacity ratio, i.e. $N_{60} / N_{\max }$)

Thank you for your attention!

