Structural model

"the **system** is a structured whole that consists of elements selected deliberately and having certain functions as well as connections/relationships among them; it is establised in order to achive determined goals or to solve problems".

- elements: have determined attributes
- relationships
- sub-system (hierarchy of system levels)
- part-system

elements + relationships = System + Environment

Environment: group of factors influencing the operation of the system input and output factors

Description of systems

- aim
- function
- resources
- extent
- status
- environment
- relationship with the environment

Hierarchical structure (subordination)

- aim-hierarchy
- element hierarchy
- relationship hierarchy
- process hierarchy

Description of structure

Static structure

- system element
- relationship
- hierarchy

Dynamic structure

- operational structure
- adaptivity

Type of systems

- Simple system
 Complex system
- Closed systemOpened system
- Natural system
 Human-built system
 Human machine systems
- Static systemsDynamic system
- Deterministic system
 Stochastic system

Structure

Operation

Structure of elements

with consideration to management levels

Structure inside the elements

Notations according to element complexity

		Flow	Storage	Transfo	rmation	Flow
		Information (input)	Information	Algorithm	Operation	Information (output)
Element	S _{xy}	$_{i}I_{S_{xy}}$	$_{\mathrm{T}}\mathrm{I}_{\mathrm{S}_{\mathrm{xy}}}$	$A_{S_{xy}}$	$O_{S_{xy}}$	$_{\mathrm{O}}\mathrm{I}_{\mathrm{S}_{\mathrm{xy}}}$
Level	S _y	$_{\mathrm{i}}\mathrm{I}_{\mathrm{S}_{\mathrm{y}}}$	$_{\mathrm{T}}\mathrm{I}_{\mathrm{S}_{\mathrm{y}}}$	A_{S_y}	$\mathbf{O}_{\mathbf{S}_{\mathrm{y}}}$	$_{\mathrm{O}}\mathrm{I}_{\mathrm{S}_{\mathrm{y}}}$
Whole system	S	$_{i}I_{S}$	$_{\mathrm{T}}\mathrm{I}_{\mathrm{S}}$	A_{S}	O_S	$_{\mathrm{o}}\mathrm{I}_{\mathrm{s}}$

goal of information management element, input, output information

$${}_{0}I_{S_{xy}}=t_{S_{xy}}({}_{i}I_{S_{xy}},{}_{T}I_{S_{xy}})$$
 ${}_{0}{}^{2}I={}^{2}A({}_{i}{}^{2}I,{}_{T}{}^{2}I)$ ${}_{0}S_{xy}=f(t_{S_{xy}})$ ${}_{0}S_{xy}=f(p,A_{S_{xy}})$

Connection/relationship structure among the elements

complexity, relations, directions

$$M = f(E,R)$$

$$R_{L} = \frac{E^2 - E}{2}$$

$$D_{L} = E^{2} - E$$

$$M_{R} = \frac{R_{V}}{R_{I}}$$

RELATIVE COMPLEXITY

 $0 < M_R < 1$

Notations used for modelling the connections between elements

UPPER LEFT INDEX	DYN	AMIC	<u>UPPE</u>	ER RIGHT INDEX:		ATIONSHIPS ONG LEVELS
Second Minute Hour Day Week	I II IV V			Upper level: Equivalent level: Lower level: Material – energy		U E L : ME
	•	Infor	l mation			
LOWER LEFT INDEX:			LOW	ER RIGHT INDEX	<u>:</u> COI	MPLEXITY
DIRECTIVITY Input:	i			In case of element	t:	S _{xy}
Output:	0			In case of level:		Sy
CONTAINMENT Inner: Outer:	b k			In case of the who	le sy	stem: S

Model of connections/relationships among elements

in case of one element

in case of one level

in case of the whole system

The connections can be analyzed according to the following criteria:

information supply cost (data storage and transmission)

- directions
- quantity and groups of transmitted information (data)
- frequency of transmission (dynamics , time-cycle)
- technology of transmission

centralized – decentralized network

- cost of transmission
- time/duration of transmission (data aging)

Simple marking of information flow between elements

The information that is **received by** the level y. and element x. from level k. and element j.

The information that is $\underline{\text{transmitted by}}$ the level y. and element x. to the level k. and element j.

$$_{o}\mathbf{I}_{\mathbf{S}_{xy}}^{\mathbf{S}_{jk}} = {}_{i}\mathbf{I}_{\mathbf{S}_{jk}}^{\mathbf{S}_{xy}}$$

symmetry

Totality of the information of a certain element

Dynamic structure

In transportation organizations the information management actions can be repeated

•	per second	(1),
---	------------	------

- per minute (II),
- hourly (III),
- daily (IV),
- weekly (V),
- monthly (VI),
- annually (VII).

Dynamics of element structure

Is it working?

 I,IVS_{2k}

time cycles

Dynamics inside the element structure

How is it working?

Dynamics among the elements

What kind of relationships does it have?

Dynamic structural model of transportation information systems

- Dynamics of element structure and connections between elements

