Structural model

„the system is a structured whole that consists of elements selected deliberately and having certain functions as well as connections/ relationships among them; it is establised in order to achive determined goals or to solve problems".

- elements: have determined attributes
- relationships
- sub-system (hierarchy of system levels)
- part-system
elements + relationships $=$ System + Environment
Environment: group of factors influencing the operation of the system input and output factors

Description of systems

- aim
- function
- resources
- extent
- status
- environment
- relationship with the environment

Description of structure

Static structure

- system element
- relationship
- hierarchy

Dynamic structure

- operational structure
- adaptivity

Hierarchical structure (subordination)

- aim-hierarchy
- element - hierarchy
- relationship - hierarchy
- process - hierarchy

Type of systems

- Simple system

Complex system

- Closed system

Opened system

- Natural system

Human-built system
Human - machine systems

- Static systems

Dynamic system

- Deterministic system

Stochastic system

Structure of elements

with consideration to management levels

Structure inside the elements

Notations according to element complexity

		FlowInformation(input)	Storage Information	Transformation		FlowInformation(output)	
		Algorithm		Operation			
Element	S_{xy}		${ }_{\mathrm{i}} \mathrm{I}_{\mathrm{S}_{\mathrm{xy}}}$	${ }_{\mathrm{T}} \mathrm{I}_{\mathrm{S}_{\mathrm{xy}}}$	$\mathrm{A}_{\mathrm{S}_{\mathrm{xy}}}$	$\mathrm{O}_{\mathrm{S}_{\mathrm{xy}}}$	${ }_{\mathrm{O}} \mathrm{I}_{\mathrm{S}_{\mathrm{xy}}}$
Level	Sy	${ }_{\mathrm{i}} \mathrm{I}_{\mathrm{S}_{\mathrm{y}}}$	${ }_{\mathrm{T}} \mathrm{I}_{\mathrm{S}_{\mathrm{y}}}$	$\mathrm{A}_{\mathrm{S}_{\mathrm{y}}}$	$\mathrm{O}_{\mathrm{S}_{\mathrm{y}}}$	${ }_{\mathrm{O}} \mathrm{I}_{\mathrm{S}_{\mathrm{y}}}$	
Whole system		${ }_{i} \mathrm{I}_{\text {S }}$	${ }_{T} \mathrm{I}_{\text {S }}$	$\mathrm{A}_{\text {S }}$	$\mathrm{O}_{\text {S }}$	${ }_{\mathrm{O}} \mathrm{I}_{\mathrm{S}}$	

goal of information management element, input, output information

$$
\begin{array}{cc}
d s_{x y}=t s_{x y}\left(i s_{x y}, T s_{x y}\right) & 0^{2} l==^{2} A\left(i l, \tau^{2} l\right) \\
A s_{x y}=f\left(t_{x y}\right) & O_{s_{x y}}=f\left(p, A_{s_{x y}}\right)
\end{array}
$$

Connection/relationship structure among the elements

complexity, relations, directions

$$
\begin{aligned}
\mathrm{M} & =\mathrm{f}(\mathrm{E}, \mathrm{R}) \\
\mathrm{R}_{\mathrm{L}} & =\frac{\mathrm{E}^{2}-\mathrm{E}}{2}
\end{aligned}
$$

One - directional

$$
D_{L}=E^{2}-E
$$

$$
M_{R}=\frac{R_{V}}{R_{L}}
$$

Notations used for modelling the connections between elements

UPPER LEFT INDEX: DYNAMIC		UPPER RIGHT INDEX: RELATIONSHIPS AMONG LEVELS
Second	I	
Minute	II	Upper level: U
Hour	III	Equivalent level: E
Day	IV	Lower level: L
Week	V	
.	.	Material - energy level: ME
- -		
Information		
LOWER LEFT INDEX:		LOWER RIGHT INDEX: COMPLEXITY
DIRECTIVITY		In case of element: $\quad S_{\text {xy }}$
Input:	i	
Output:		In case of level: $\quad \mathbf{S}_{\mathbf{y}}$
CONTAINMENT:		In case of the whole system: S
Inner:	b	
Outer:	k	

Model of connections/relationships among elements

in case of one level

The connections can be analyzed according to the following criteria:

- directions
information supply cost (data storage and transmission)
- quantity and groups of transmitted information (data)
- frequency of transmission (dynamics, time-cycle)
- technology of transmission
centralized - decentralized network
- cost of transmission
- time/duration of transmission (data aging)

Simple marking of information flow between elements

The information that is received by the level y . and element x. from level k. and element j.

The information that is transmitted by the level y. and element x. to the level k. and element j.

$$
{ }_{o} \mathbb{S}_{S_{x y}}^{S_{j k}}={ }_{i} \Psi_{S_{j k}}^{S_{\mathrm{xy}}}
$$

Totality of the information of a certain element

Dynamic structure

In transportation organizations the information management actions can be repeated

- per second
- per minute
- hourly
- daily
- weekly
- monthly
- annually
(I),
(II),
(III),
(V),
(VI),
(VII).

Dynamics of element structure

Dynamics inside the element structure

Dynamics among the elements

Is it working?

How is it working?

What kind of relationships does it have?

Dynamic structural model of transportation information systems

- Dynamics of element structure and connections between elements

