

Transport Informatics

Study-aid for practices in computer laboratory

Authors: Dr. Csaba Csiszár, Bálint Caesar, Bálint Csonka and Dávid Földes

Keywords: information, data, database, SQL, Microsoft Access

This study-aid summarizes the basic concepts, knowledge and terminology of the database
management systems and Database Management. Commands and rules of SQL (‘words’ and
‘grammar’) are explained using a sample database.

During the lectures students learn about data modelling and the techniques of creating databases.
They will be able to create own databases and to manage data according to different aspects.

Content

Foreword 1

1. Basics of Database Management 2

1.1. Evolution of Database Management Systems and software 2
1.2. Characteristics of the SQL language 4
1.3. Features of Microsoft Access 5
1.4. Types of data 7

2. Normalization 9

2.1. Steps of normalization – Example 1 9
2.2. Steps of normalization – Example 2 12
2.3. Disaggregation of N : M (many-to-many relationship) using connector table
(notional entity type) 13
2.4. Building relationships using multiplied tables 14
2.5. Structure of sample database (relationship within table) 15

3. Create a sample database 17

3.1. Creating the table structure 17
3.2. Adding sample data 19

4. Types of SQL commands, SELECT command 20

4.1. DDL commands 20
4.2. DML commands 21
4.3. Structure of SELECT command 21
4.4. SELECT list, alternative column name 22

5. SELECT command 23

5.1. ORDER BY clause 23
5.2. Anomaly of missing data (NULL value) 23
5.3. Omit duplicated data (DISTINCT) 24
5.4. WHERE clause 24
5.5. Arithmetical, logical and concatenation operators 26

6. SELECT command 27

6.1. Functions 27
6.2. GROUP BY clause 29
6.3. HAVING clause 32

7. Complex queries 33

7.1. Queries based on many (related) tables 33
7.2. Cumulative queries 33
7.3. Embedded queries (subqueries) 34
7.4. Crosstab queries 35

8. DDL commands 37

8.1. CREATE command 37
8.2. Validation rules (CONSTRAINTs) 37
8.3. Default value 38
8.4. ALTER command 39
8.5. DROP command 39

9. DML commands 40

9.1. INSERT INTO command 40
9.2. UPDATE command 41
9.3. DELETE FROM command (record, table content) 41
9.4. UNION of records 42
9.5. MAKE TABLE query 42

10. Exercises 43

10.1. Exemplary assignments for the 1st midterm 43
10.2. Exemplary assignments for the 2nd midterm 44

Literature 45

Annexes 46

1

Foreword

Organizing transportation systems (organizations) and their processes, as well as the target-
oriented operation require high quality information supply. The aim of the transportation
information systems is the satisfaction of the demand for information, where efficiency
depends on the managed database structure as resource. The information and the data have
own value and therefore it is important, how we manage this value.

The most important ‘soft’ components of the transportation information systems are data.
The relationships/connections between the components and processes are realized by
streaming data. Database is a structured system of data which bridges the temporal gap
between the recording and utilization processes (storage). In addition, the concept of the
database has been enlarged with processing procedures in recent years. Accordingly, the
knowledge related to the database management focuses preliminary on planning of storage
structure and processing operations. As data map the components and processes of the
operated system, therefore data modelling requires precise knowledge regarding structure
and function of the transportation system and high level skills for abstraction.

Importance of this topic is enhanced by the so called information explosion that is remarkable
recent years. The volume of the handled data is basically affected by the number of
components taking part in the transportation, the attributes of the components and the
sampling interval. Because of the two latter factors the amount of the handled data increased
significantly recently, whereas only short time interval is tolerated for running of queries.
Further challenges are merging and common handling of the information originating from
different sources, with dissimilar format and meaning; what is basic precondition of the
integration of the entire transportation system [1].

Courses regarding analyzing, planning transportation information systems including database
planning have decades long tradition at the Department of Transport Technology and
Economics, Faculty of Transportation Engineering and Vehicle Engineering of Budapest
University of Technology and Economics [2]. Knowledge of relational data models and
database planning is relatively stable. This knowledge is provided for the students in ever
changing circumstances, especially with regards to software. Accordingly, it is focused mostly
on the timeless knowledge, whereas students are getting familiar with the software too.
Compilation and update of this study-aid according to didactical aspects are based on
experiences gained in the last years [3].

The knowledge of the database management begins with the background and basics of the
development. Main concepts and definitions, as well as their relationships are learnt on the
lectures, what are deepened on practices through examples. Due to space limitations the
study-aid contains only the framework of the learning material. The content may be changed
year by year. Learning and practicing the commands take place in computer laboratory which
requires the active participation of the audience. In order to make study easier the learning
material contains practical exercises at the end of the chapters. Literature can be found at the
end of the learning material which contains the most important sources. In case of demand
for further details, students may gain adequate knowledge in the topic.

2

1. Basics of Database Management

Database: Database is a set of data elements, which are related to each other and stored
together without overlapping and redundancy in a complex, logical structure. Beforehand
database meant only a structured set of data, but nowadays a significant part of the processing
operations are also included in the concept of database.

The structure of the database allows the access to the data and their modification. The aim of
the database is reliable storage of the data and the fast retrieving. The database is not the
same as the database management system, which is a computer program that provides basic
functionalities including creation and maintenance of the databases, handling the system and
the user processes.

Database planning begins with data modelling. Data model: mapping of the reality into data
elements considering their relations, the circumstances and rules of the utilization - planning
of the database structure.

Operations carried out with the database called Database Management, which aims at
provision of information from the available and generated data (the volume of which is
continuously growing along with the evolution of technology) with short retrieving time.

Storage of the data is considered on two levels:

 Logical level – what we store, which data and in which context;

 Physical level – how we store, how we access to the data on the physical storage
system;

The tasks of computer data processing:

1. planning and implementing of the database structure,
 (defining the empty tables and their relations),

2. data input to the empty structure (to be user friendly), validation of the format and
the content of the data,

3. update the data: new data entry, modification, deletion.

4. planning of the data query (we harmonize this with the data model)

- simple query (e.g. searching, sorting),

- complex query (e.g. classification and processing).

1.1. Evolution of Database Management Systems and software

The demand for fast, mechanized storage and retrieval of data has been arisen in the first half
of the last century, when the first minicomputers were built, which used punched tape to ease
the census. The first, so called, sequential files ('serial' access to the data according to the
physical order, going through a lot of unnecessary data) were used in the late 1940s. The first
non-sequential file system ('direct' access to the data using labels) has been developed at IBM
in 1959. The current form of databases was emerging in the mid-1960s, when several new
programming languages (e.g. Fortran, Basic) were developed. Shortly thereafter the first
Database Management Systems (DBMSs) came into existence. The basics of the ‘retiary’ data

3

model was developed in 1961, and shortly after the hierarchical model appeared as well. Any
entity in the ‘retiary’ model can be connected to any another entity (with different
relationships too). For example, relationships between individuals (N:M relationship). The
relationships use links and pointers in the database. It is disaggregated into 1: N connections.
The basic of the hierarchical data model is the Parent-Child Relationship or Hierarchy which is
illustrated in a graph (1: N, 1: 1 connections). The first ‘databank’ with computer network
based accession was created by the IBM in 1965 and was called SABRE.

The conventional DBMSs collected and processed data which can be described by numbers
and letters (alphanumeric characters). The advanced DBMSs, which were emerging later,
allowed storing visual, sound, etc. data.

The aim of data modelling is to create an easily processable (by computer) data structure
regarding the entities. The most common types of data models are: hierarchical, retiary,
relational, object-oriented and multi-dimensional.

The retiary and hierarchical data models were used in the first commercial database systems
in the late 1960s and early 1970s. Later these data models were excluded by the relational
data models. The most common is the relational data model from the 1980s. The data are
stored in the rows of the tables. In this model there are no pre-defined relationships between
the single data elements. All data are stored with redundancy, which are required to create
connections. Nowadays on the field of Database-Management new ways like object-
orientated approach are getting widely extended. The role of Distributed Database
Management Systems (DDBMSs) is also increasing significantly. The most commonly used
database management software are summarized in Table 1.1.

Table 1.1. Most common DBMSs

Open source DBMSs

Without any restrictions

MySQL
(Linux/Windows)

PostgreSQL
(Linux/Windows)

Ingres Community
Edition

SQLite
(Linux/Windows)

Free accessible DBMSs

Some DBMSs are restricted, but all of them are appropriate for
studying purposes

Microsoft SQL Server 2008
Express Edition
Microsoft SQL Server 2008
Management Studio Express

Oracle Database 11g Express
Edition (Linux/Windows)

 Microsoft Jet Database Engine 3

Trial: Informix Dynamic Server
Enterprise Edition V10.0

Mini SQL

http://dev.mysql.com/downloads/
http://www.postgresql.org/download/
http://www.ingres.com/products/Prod_Download_Portal.html
http://www.ingres.com/products/Prod_Download_Portal.html
http://www.hwaci.com/sw/sqlite/download.html
http://www.microsoft.com/en-us/download/details.aspx?id=30438
http://www.microsoft.com/en-us/download/details.aspx?id=30438
http://www.microsoft.com/en-us/download/details.aspx?id=7593
http://www.microsoft.com/en-us/download/details.aspx?id=7593
http://www.oracle.com/technetwork/database/database-technologies/express-edition/downloads/index.html
http://www.oracle.com/technetwork/database/database-technologies/express-edition/downloads/index.html
http://www.download.com/Microsoft-Jet-Database-Engine-3/3000-2114_4-4238261.html
http://www-128.ibm.com/developerworks/downloads/im/ids/?S_TACT=105AGX30&S_CMP=DEVX
http://www-128.ibm.com/developerworks/downloads/im/ids/?S_TACT=105AGX30&S_CMP=DEVX
http://www.hughes.com.au/products/msql/
http://dev.mysql.com/downloads/
http://www.postgresql.org/download/
http://www.ingres.com/products/Prod_Download_Portal.html
http://www.hwaci.com/sw/sqlite/download.html
http://www.microsoft.com/downloads/details.aspx?familyid=220549B5-0B07-4448-8848-DCC397514B41&displaylang=en
http://www.oracle.com/technology/software/products/database/oracle10g/index.html
http://www-128.ibm.com/developerworks/downloads/im/ids/?S_TACT=105AGX30&S_CMP=DEVX
http://www.hughes.com.au/products/msql/

4

At Faculty of Transportation Engineering and Vehicle Engineering in previous decades the
learning material were dBase, Clipper, Oracle9.i, Access 2.0 and the advanced versions and
the students learned the method of application development. Nowadays, Access DBMS is the
most suitable for teaching purposes due to the wide availability. Self-sufficient work on
database planning and development was always important part of our education, therefore
students prepare data model and then an application in a selected topic, which is aided by
consultations. (Selection of topic of homework).

1.2. Characteristics of SQL language

Evolvement of different DBMSs required development of a standard query language. As a
consequence, the SQL (Structured Query Language) was created using similar ‘linguistic
elements’ as in everyday speech and thinking. It was standardized in 1986.

SQL= (command) words + grammar (regulations regarding use of words).

SQL makes creation and query of relational database as well as retrieve of information stored
in the ‘relations’ possible. There is no need to specify how to access the data, but only the
properties of the necessary information should be determined.

SQL language contains the following elements:

 objects,

 NULL value,

 expressions,

 operations,

 commands,

 syntactical elements,

 procedures.

Formal rules of commands is based on using a unified coding system (Table 1.2). For instance:

 Uppercase: commands, logical operators, functions, etc.

 Lowercase: objects, column, etc.

Table 1.2. Most important formal rules of SQL commands

Indication Meaning

UPPERCASE Required, cannot be left out and must be typed correctly.

italic lowercase User defined variables.

[] List of optional items.

… Repetition of the identical elements.

<> Mandatory elements should be listed.

{} At least one item must be listed.

| Choosing between two or more possibilities.

Input of commands is facilitated by DBMSs in different ways. They recognize the mistyping
and modify them according to syntactical rules.

5

The aim of creation of databases is to gain as many information as possible. Accordingly, the
most important command is SELECT.

In case of large and network-based databases, setting user groups’ permissions (e.g.
commands GRANT, REVOKE) and logging their operations are especially important.

The basic SQL commands are summarized in Table 1.3.

Table 1.3. Basic SQL commands

DDL

Data Definition
Language

creates an object CREATE

modifies the structure of an existing
object

ALTER

deletes all data and structure of a
table

DROP

DML

Data Manipulation
Language

adds records INSERT INTO

modifies records UPDATE

removes records DELETE FROM

query SELECT

SQL is not procedure oriented, focusing on what we want receive, not how. The syntax is strict.

Languages involving SQL: e.g. Pascal, C, Cobol, dBase, Access

PL/SQL=Procedural Language – allows to prepare procedures.

 declare variables,

 assign values to variables,

 conditional structures,

 loop,

 functions, procedures.

1.3. Features of Microsoft Access

MS ACCESS= relational database management system, which has a user friendly graphical
interface.

Applied object types and their relations are summarized in Fig. 1.1. Detailed description of
object types is available in Table 1.4.

In many cases the user operations are supported by built-in applications, called wizards.
Newer and newer versions are published (compatibility issues), but the knowledge in the
background (relational data model) is unchanged.

6

Table 1.4. Properties of objects of the Access

Tables
 similar to the tables in their appearance

 redundancy, duplication should be avoided (normalization)

Queries

 based on existing table(s) and/or query(ies)

 applied for different tasks

 two basic types: select (collect and visualize data) and action queries
(modify records in a table)

 data stored in different tables are listed together in one object

 queries and reports are usually based on these source of records

Forms
 data entry and data visualization on screen

 buttons can be placed on it (menu system can be built)

Reports

 data visualization and summing/grouping in printing format

 the current data are reported

 it can be sent by e-mail

Macros

 simple programming language

 automation of event control is possible; incorporation of often repeated
processes into one command, execution of operations is conditional

Modules

 new functions can be added to the database

 own ’programs’, procedures, functions, etc. compiled in VBA-visual basic
language

Creating a new database, sample databases are not to be used. Only one file is created, which
is portable. Fig. 2. illustrates a typical screenshot. The object type can be selected at the left
side of the window. In general there are three possibilities to create database-objects:

 Automatically: Access automatically creates a predefined version of the object (rarely
used).

Queries

Forms Reports

Tables

Macros Modules

Database application

Fig. 1.1: Relations of object types in Access

https://support.office.com/hu-hu/article/Az-adatb%C3%A1zis-kezel%C3%A9s-alapjai-a849ac16-07c7-4a31-9948-3c8c94a7c204#bmtables
https://support.office.com/hu-hu/article/Az-adatb%C3%A1zis-kezel%C3%A9s-alapjai-a849ac16-07c7-4a31-9948-3c8c94a7c204#bmqueries
https://support.office.com/hu-hu/article/Az-adatb%C3%A1zis-kezel%C3%A9s-alapjai-a849ac16-07c7-4a31-9948-3c8c94a7c204#bmforms
https://support.office.com/hu-hu/article/Az-adatb%C3%A1zis-kezel%C3%A9s-alapjai-a849ac16-07c7-4a31-9948-3c8c94a7c204#bmreports
https://support.office.com/hu-hu/article/Az-adatb%C3%A1zis-kezel%C3%A9s-alapjai-a849ac16-07c7-4a31-9948-3c8c94a7c204#bmmacros
https://support.office.com/hu-hu/article/Az-adatb%C3%A1zis-kezel%C3%A9s-alapjai-a849ac16-07c7-4a31-9948-3c8c94a7c204#bmmodules

7

 Wizard: Wizard guides you through the planning process.

 Design view: only manual planning; all the system setting opportunities are available.

Fig. 1.2: A typical screenshot from the Access

The ‘engine’ of the Queries is the SQL language, which defines the operations. One SQL
command is assigned to each query. Simple queries can be created in Design view using the
‘grid’; whereas complex queries can be created by editing the SQL commands (Fig. 1.3.).

Queries

 Simple Complex
QBE grid and graphical query design tools editing SQL commands
 (compiling conditions visually) (compiling conditions by ‘programming’)

Fig. 1.3: Creation of query types

1.4. Types of data

Different versions of Access allow using app. 10 typical data types (Table 1.5.). There may be
differences according to the versions. The data type of a field in a table (the attribute of the
entity) should be set at creating the table (Design View).

The most simple data validation is also realized by setting the data type, as users can input
only the data corresponding to the data type.

Search Wizard: we can select value from another table (foreign key), but we can also declare
the set of applicable data. It is usually applied in case of foreign key, when we select data from
the table on the ‘1’ side.

8

Table 1.5. Types of data in Access

Types of data Stored Restrictions, requirements

character

text
Alphanumerical data
(text and numbers) – fix
length

 max. 255 character

 data input with input mask

memo
Alphanumerical data
(text and numbers) –
variable length

 searching, filtering, sorting
is NOT POSSIBLE in the case of memo

 manual data input with max. 65535
character

numerical
data

number

Numerical data
(when we use them in
aritmetic operations;
otherwise character type)

 adjust the size of the filed to 1, 2, 4, 8 or
16 byte

 byte (0…255), integer (0…65535), long
integer (not decimals)

 single, double (decimals)

data
derived
from
numerical
data

date and
time

In different formats

 as integer with double precision in 8
byte

 data input with input mask

currency For specific purposes 8 byte numbers; 4 digits for decimals

auto number
(counter)

Unique values in
ascending order

 4-byte (long) integer

 usually the primary key

yes/no
(logical)

Logical (Yes or No) data
 -1 → Yes

 0 → No

OLE-object

Picture, sound, Excel
worksheet, Word
document, and others
from Office and Windows-
based programs

 max. 2 GB data

 one OLE service is required (specific
program that supports the type of the
file)

hyperlink Web pages

 max. 1 GB data

 links to files, webpages, on own
computer, local network, etc.

attachment Any supported file format

 images, spreadsheets, documents,
graphs and other supported file types
can be attached to the database records

Two types of the stored data:

 simple data storage unit: variable,

 complex data storage unit: record.

Data elements are logically corresponding in the records. The association principle is the
entity, whose attributes are stored in the record. The entity can be a person, an object or a
concept (e.g. serving one station by public transportation). The entities belong to each other
(into one entity type), that are mapped by the same attributes.

9

2. Normalization

Database planning begins with identification of data to be stored. It is followed by
normalization (operations for disaggregation of tables): when the ‘appropriate’ structure is
created. Through the normalization the data to be stored are grouped into tables connected
to each other, so that the database requires smaller storage capacity which is more
transparent and complying with the rules of normalization. The normalization consists of
several steps. As a result of each step, the structure of the database meets the conditions of
one level higher normal form (NF). The NF levels are cumulative, namely, in order to meet
higher level conditions, all the conditions of lower levels have to be met (stricter rules).

The successive steps of normalization process are introduced through examples.

2.1 Steps of normalization – Example 1

In our example car accessories are registered. Creation of a database structure begins with
definition of necessary data and assigning them to tables (Table 2.1.):

 vehicle identification number (V_ID),

 product,

 type,

 door numbers,

 accessory name,

 accessory part number.

Table 2.1. 0NF

W0B578547 Opel Astra 5 Airbag 10125 Air condition 98542

GTH4724782 Fabia Skoda five Airbag 10125 Air condition 32545
Security alert,

CD player
10254,
65020

CCP4672134 Lada Samara 3 Brake light 00001

CCP4672134 Lada Samara 3 Brake light 00001

1 NF (first normal form)

Conditions of 1st NF are not met because:

 number and order of columns are not equal in each row,

 attribute of door numbers has not numerical value in each row,

 some attributes have more than one value,

 there are two equal lines (redundancy), thus it is impossible to create primary key.

The proper structure for 1NF is shown in table 2.2. One entity (record) corresponds to a
specific accessory built into one vehicle. Because of the repetition of rows unambiguous
identification can be realised only with multiple key. For instance, one record can be identified
with V_ID and accessory part number. In the multiple primary key the accessory name is not

10

appropriate because the accessory name does not imply the part number, but on the contrary,
the accessory part number implies its name. Namely in 1NF, the secondary attributes
functionally depend on the primary key.

In the case, if we cannot define any multiple key or it had too many fields, unique identifier is
used (e.g.: _ID as suffix in the name – counter type).

Table 2.2. 1NF

V_ID Product Type
Door

numbers
Accessory

name
Accessory
Part Nr.

W0B578547 Opel Astra 5 Airbag 10125

W0B578547 Opel Astra 5 Air condition 98542

GTH4724782 Skoda Fabia 5 Airbag 10125

GTH4724782 Skoda Fabia 5 Air condition 32545

GTH4724782 Skoda Fabia 5 Security alert 10254

GTH4724782 Skoda Fabia 5 CD player 65020

CCP4672134 Lada Samara 3 Brake light 00001

2 NF (second normal form)

Conditions of 2nd NF are not met because:

 there is a field which depends on only one part of the multiple primary key
 (e.g.: V_ID per se identifies the product).

In order to create the 2NF structure, it is necessary to decide: which components the non-key
(secondary) attributes depend on? (Fig 2.1.)

V_ID Product
Type
Door numbers

Accessory
Part Nr.

Accessory name

Fig. 2.1. Functional dependences between the attributes

The V_ID attribute identifies the product, the type and the door numbers of the vehicle.
According to the disaggregation rules of 2NF (all fields depend on the multiple key or the key
consists of one single field) the attributes are assigned to 3 different tables (Fig 2.2.), where
the entity types can be identified yet. Based on the type of relationships between tables the
primary and the foreign keys can be identified. The primary key consists of one field in the Car
and the Accessory (type) table, whereas it consists of two fields in the Accessory type of one
car table (the latter two fields are also foreign keys). At the more (N) side table (Accessory
type of one car) the two fields constitute the multiple key together; this table is called as
connector table.

11

 1:N

Vehicle

V_ID Product Type
Door

numbers

W0B578547 Opel Astra 5

GTH4724782 Skoda Fabia 5

CCP4672134 Lada Samara 3

 1:N

 Accessory type of one car

Accessory (type) Part Nr. V_ID

Part Nr. Name 10125 W0B578547

10125 Airbag 98542 W0B578547

98542 Air condition 10125 GTH4724782

32545 Air condition 32545 GTH4724782

10254 Security alert 10254 GTH4724782

65020 CD player 65020 GTH4724782

00001 Brake light 00001 CCP4672134

Legend: primary key

foreign key

Fig. 2.2. 2NF

It can be observed, that the number of data elements has been decreased: 38 instead of 42,
that is the level of redundancy became lower. (Weak logical redundancy is necessary to build
relationships.)

3 NF

Conditions of 3rd NF are not met because:

 functional dependency is not only originated from the primary key, that is functional
dependency between the secondary attributes also exists (transitive dependency).

In the 2NF Car table all the secondary attributes depend on the V_ID. However, the field Type
also implies Product; it means there is transitive dependency between two secondary
attributes. For instance, if this table contained more than one car with Opel Astra type, in each
case the product and the type should be recorded (redundancy). Accordingly, the conditions
of 3NF can be met by further disaggregation of the table. The result is shown in Fig. 2.3.

In the literature 4NF and 5NF are also introduced, but usually it is enough if database meets
the requirements of the 3NF.

12

1:N

Vehicle type Vehicle

 Type Product

V_ID Type Door numbers
 Astra Opel W0B578547 Astra 5

 Fabia Skoda 1:N GTH4724782 Fabia 5
 Samara Lada CCP4672134 Samara 3

 1:N

 Accessory (type) Accessory type of one car

 Part Nr. Name Part Nr. V_ID
 10125 Airbag 10125 W0B578547
 98542 Air cond. 98542 W0B578547

 32545 Air cond. 10125 GTH4724782

 10254 Alarm 32545 GTH4724782

 65020 CD player 10254 GTH4724782

 00001 Brake lamp 65020 GTH4724782

 00001 CCP4672134
Legend: primary key

foreign key

Fig. 2.3. 3NF

2.2 Steps of normalization – Example 2

In this example invoices are registered. The following data elements (attributes) are stored:

 INVOICE NR

 DATE

 CUSTOMER’S NAME

 CUSTOMER’S ADDRESS

 PRODUCT CODE

 PRODUCT NAME

 QUANTITY

 UNIT PRICE

 PRICE (values calculated from other fields are not stored)

 TOTAL (values calculated from other fields are not stored)

The proper structure according to the normalization is shown in Fig. 2.4., which is a simplified
representation (name of the tables and the attributes, indication of the relationships with
keys).

13

Customer ID

Name

Address

Customer

Invoice Nr.

Product Code

Quantity

Sale

Invoice Nr.

Date

Customer ID

Invoice1:N

1:N
Product Code

Product Name

Unit Price

Product

N:1

Legend: primary key

foreign key

Fig. 2.4. Table structure in 3NF (example of invoice)

2.3. Disaggregation of N : M relationships – using connector table
 (conceptual entity type)

During creating table structure of the database, the N:M type, many-to-many relationships
should be avoided. This kind of relationships can be disaggregated with using a third
intermediate connector table. The new table mostly associated by a conceptual entity type.
The process of disaggregation is presented by two examples. The result is two 1:N
relationships being symmetric to each other.

Example 1: medical treatment (doctors and patients) registration – Fig. 2.5.

Doctor ID

Name

Department

Doctor

Patient ID

Name

Date of birth

Patient
N:M

Doctor ID

Name

Department

Doctor

Patient ID

Name

Date of birth

Patient

Treatment ID

Doctor ID

Patient ID

Register
1:N N:1

Diagnosis

Date

Legend: primary key

foreign key

Fig. 2.5. Disaggregation of N:M relationships (example of medical treatment)

14

Example 2: Registration of students and subjects (the subjects may be offered in different
terms) – Fig. 2.6.

SUBJECT CODE

Subject name

Credit

Subjects

NEPTUN CODE

Name

E-mail

Students
N:M

SUBJECT CODE

Subject name

Credit

Subjects

NEPTUN CODE

Name

E-mail

Students

NEPTUN CODE

SUBJECT CODE

Term

Register1:N N:1

REGISTER ID

Legend: primary key

foreign key

Fig. 2.6. Disaggregation of N:M relationships (example of subject registration)

2.4. Building relationships using multiplied tables

In this example the most important data of football matches are registered. We don’t do any
calculation with the number of goals. The proper structure according to the normalization is
shown in Fig. 2.7., which is a simplified representation (name of the tables and the attributes,
indication of the relationships with keys).

The curiosity of the structure that the Team table is joined twice to the Match table; as the
home team (Team_1) and the visitor team (Team_2); whereas the same data about the home
and the visitor team are stored, so in reality only one table exists. (The teams can change their
’role’, because once they are home teams, other times visiting teams.) This problem can be
solved with using so called virtual tables, which are created by repeated adding in the Access
(e.g.: in the field above the query planning grid).

15

Field ID

Field Name

Address

Field

Team ID

Team Name

Headquarter

Team_1

Field ID

Time

Home

Match

1:N

N:1

Visitor

Result

Team ID

Team Name

Headquarter

Team_2
N:1

Legend: primary key

foreign key

Fig. 2.7. Building relationships using multiplied tables (example of football matches)

2.5. Structure of sample database – relationship within table

EMP

empno

ename

job

mgr

sal

comm

deptno

DEPT

deptno

dname

loc

1 1

Legend: Primary keyPrimary key

Foreign keyForeign key

hiredate

Fig. 2.8. Structure of the sample database

16

In this example data of employees and departments are registered in two tables. The EMP
table contains the data of employees (e.g. ID, name, job, etc.), whereas in the DEPT table we
can find the data of department (ID, name and location). Between the two tables the
connection is realized by department number (deptno). The primary key in the EMP table is
the Emloyee_ID (empno), but it appears also in the mgr field in the same table as a foreign
key. The primary key in the DEPT table is the department number (deptno), which is a foreign
key in the EMP table. Table 2.3 contains the short description of fields.

Table 2.3. Description of fieldnames of the sample database

Field
name

Meaning Description

empno Employee ID Each employee has an individual identifier

ename Name of the employee Surname of the employee

job Job Name of the job (e.g. CLERK)

mgr Manager ID Direct supervisors’ ID of the employee

hiredate Hire date yyyy/mm/dd is the format

sal Salary Monthly salary (it is filled for everyone)

comm Commission
It is not filled for everyone – NULL value
(if it is filled, it can be also 0).

deptno Department number Each department has an individual identifier

dname Department name Name of the department (e.g. SALES)

loc Location
Name of city, where the department is located
(e.g. CHICAGO)

The curiosity of the structure is the relationship within table between empno and mgr fields;
that means the empno value of the manager is stored in the mgr field of an employee. This
structure is especially suitable in case of hierarchical organizations to map the relationships
between the employees. This solution is regarded as a traditional relationship between the
original and new ‘virtual’ EMP table. The theoretical application of the virtual table is similar
to previous example. One employee can be both manager (he has a subordinate) and
subordinate (he has a manager) at the same time. The CEO (ename: KING, job: PRESIDENT) is
the only exception because he has no boss, so the value of his mgr field is NULL. In case of the
other employees the value of the mgr field is filled. If someone doesn’t have any employee
(he is on the lowest level of the hierarchy) his empno doesn’t appear in another employee’s
mgr field.

Data input order: as during data input always records of ‘1’ side table are filled at first, in this
structure the employee (manager/boss) standing on higher level of the hierarchy is registered
first (or we return later to fill the mgr field as foreign key).

17

3. Create a sample database

The sample database that was shown in chapter 2.5. is created using Microsoft Access
software, which supports the SQL programming language. The software can be downloaded
for students from the szoftver.eik.bme.hu webpage for free as the part of the whole Office
package.

When creating the sample database, open the Access and choose ‘Blank desktop database’
type, name the file and select the destination folder. Then the program creates a file with
.accdb extension. During opened file status the program automatically prepares a temporary
file with .laccdb extension using the same file name. Before copy close the entire application,
and copy only the .accdb file. It should be noted that there are some differences despite of
standardization in SQL language used by different software. Before using the program we
should check whether the proper ANSI 92 type of syntax is used. (File menu -> Options ->
Object designers -> SQL Server Compatible Syntax (ANSI 92) -> This database:) Furthermore
change of the display language is possible: File menu -> Options -> Language.

3.1. Creating the table structure

After the creation of a new database, a new table can be created by clicking on the „Create”
tab and then „Table Design” icon (Fig.3.1.). A table is to be created, if all the foreign keys have
already been created, as primary keys, in the related existing tables. Preference rule: using
connected tables, the ‘1’ side table should be created always as first and then the primary key
should be set in the ‘many’ side table as a foreign key. During set up the datatype of the foreign
key, use of the Lookup Wizard is a convenient opportunity, which creates the proper
relationships between the tables automatically. If we don’t use the Lookup Wizard, the
relationships must be set up manually clicking on the ‘Database Tools’ tab and then the
‘Relationships’ icon. The preference rule should be applied during data input too; namely, first
enter the data into the table on ‘1’ side and only thereafter into table on ‘many’ side.

Fig. 3.1. Create and open a new table in design view

18

Table 3.1. Datatypes of the fields in sample database

Table Field name Datatype Further options

EM
P

empno Short Text Input mask: 0000

ename Short Text NOT NULL; maximum 30 character

job Short Text Maximum 30 character

mgr Short Text Using Lookup Wizard

hiredate Date/Time Short date

sal Number >0

comm Number

deptno Short Text Lookup Wizard

D
EP

T deptno Short Text Input mask: 00

dname Short Text NOT NULL; maximum 30 character

loc Short Text Alternative header: Location

Legend: primary key
foreign key

In the sample database the listed tables and fields (see Table 3.1.) should be created. Setting
the primary key: select the appropriate field or fields (depending on whether the key is
multiple) in design view and click on the ‘Primary Key’ icon on ‘Design’ page. The primary key
can be deleted similarly from the row of the field. The most important attribute for each field
is the datatype, which determines, what kind of data can be stored therein. Datatype of fields
determines further important attributes:

 use of the fields in expressions,

 field size,

 possibility of indexing,

 possible formats.

The created structure of the database with relationships can be seen by clicking on the
“Database Tools” tab then “Relationship” icon (Fig. 3.2.).

Fig. 3.2. Structure of the sample database in Access

There is no need in the Access to create the emp_1 table again in order to build the inner
relationship. The emp_1 table appears as a virtual table to illustrate the inner relationship
(using multiplied tables).

19

3.2. Input of sample data

Input of new data (records) into the certain table is possible after opening the Datasheet view.
Data contained in the sample database are listed in the table 3.2. and 3.3.

Table 3.2. Records of DEPT table

DEPT

deptno dname loc

10 ACCOUNTING NEW YORK

20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON

Table 3.3. Records of EMP table

EMP

empno ename job mgr hiredate sal comm deptno
7369 SMITH CLERK 7902 1980. 12. 17. 800 20

7499 ALLEN SALESMAN 7698 1981. 02. 20. 1600 300 30
7521 WARD SALESMAN 7698 1981. 02. 22. 1250 500 30
7566 JONES MANAGER 7839 1981. 04. 02. 2975 20

7654 MARTIN SALESMAN 7698 1981. 09. 28. 1250 1400 30
7698 BLAKE MANAGER 7839 1981. 05. 01. 2850 30

7782 CLARK MANAGER 7839 1981. 06. 09. 2450 10

7788 SCOTT ANALYST 7566 1987. 04. 19. 3000 20

7839 KING PRESIDENT 1981. 11. 17. 5000 10

7844 TURNER SALESMAN 7698 1981. 09. 08. 1500 0 30

7876 ADAMS CLERK 7788 1987. 05. 23. 1100 20

7900 JAMES CLERK 7698 1981. 12. 03. 950 30

7902 FORD ANALYST 7566 1981. 12. 03. 3000 20

7934 MILLER CLERK 7782 1982. 01. 23. 1300 10

In Table View the data input is aided by the TAB button on the keyboard, which switches to
the next field or the copy-paste keyboard shortcut. Input of huge amount of digitalized data
is possible by clicking on the ‘External Data’ tab then ‘Import &Link’ group, where beside other
possibilities excel is supported too.

If a new record is inputted in Datasheet View, during the data input a pen icon is visible at the
first column. The icon remains there during edition, and then disappears only if the record has
been saved. The practical advantage of the icon is that a user working in network knows when
the new record is available for the other users (after the pen icon disappeared).

20

4. Types of SQL commands, SELECT command

The commands used in the SQL language can be classified in the following groups:

 DDL (Data Definition Language): commands to define the database (table) structure
(logical structure).

 DML (Data Manipulation Language): commands to manage/maintain data

 DCL (Data Control Language): commands to handle rights/privileges in database

 TCL (Transaction Control Language): commands to manage the changes made by
DML commands.

During the seminars only the first two groups, the DDL and DML commands are discussed.

One command is to be executed in Access as follows (Fig. 4.1.): type the expression into the
SQL view of a query, then run it.

Place of the SQL commandDatabase objects

Change
the View

Run (execute)
the command

Fig. 4.1. Execute SQL commands in Access

4.1. DDL commands

Data definition language, which contains the commands to create and maintain the data
structure (tables, indexes, constraints, etc.). The most important DDL commands:

21

 CREATE: creation of structure of a new object (e.g. table). In case of tables, its
structure is defined, taking also the relationships into account.

 ALTER: modification of structure of an existing object. For instance a new column
can be added to the table.

 DROP: complete deletion of an object (both the structure and the content is
deleted).

Other DDL commands are also available in other database management systems, like
TRUNCATE (removes all records from the table and ’reset’, the counter starts from 1 in case
of a new record) or RENAME. However, the most used commands in Access are listed above.
As Access is especially user-friendly, many operations can be performed in other ways,
without use of the DDL commands.

4.2. DML commands

DML commands are necessary to handle the data stored in the database. Database structure
created by DDL commands is filled in by data using DML commands. DML commands can be
used in order to modify the content too. The most important ones:

 INSERT INTO: insert data (record) into a table.

 UPDATE: update/modify existing data (record or records).

 DELETE FROM: delete one/more/all records, but the structure remains.

 SELECT: retrieve data from the database (queries with raw or processed data).

4.3. Structure of SELECT command

Using SELECT command record(s) can be shown from one or more tables (queries) or groups
can be created. The structure of the SELECT command:

SELECT [DISTINCT] select-list
[FROM <table name, query name>
WHERE <row-condition>
GROUP BY <grouping aspects>
HAVING <group-condition>
ORDER BY <ordering aspects>];

The sequence of command clauses within SELECT command is always bound; however, only
the SELECT clause is inevitable for execution. Explanation of the clauses:

 SELECT: obligatory, determining the content of the select-list
(column names, expressions).

 FROM: the sources of data (name of tables and queries) are identified.

 WHERE: the records are selected, that meet the row-condition. If several row-
conditions are applied, they are concatenated by logical operators.

 GROUP BY: records selected by row-condition (if there is no row-condition, all the
records of the table) are grouped according to the grouping aspects. The entities
(records), where the content of grouping column is the same, are assigned to one
group.

22

 HAVING: only if GROUP BY is applied. The groups are listed, where groups meet the
group-condition. If several group-conditions are applied, they are concatenated by
logical operators.

 ORDER BY: the results (records, groups) are listed according to the sorting aspects,
considering the ordering directions (ascending or descending).

4.4. SELECT list, alternative column name

The select-list may contain:

 *: all columns are displayed.

 column list: column1, column2, …

 calculated expression: 3*column1 (if the column1 has number datatype), 47/3, etc.

 character-chain as constant: e.g. ‘HUF’. Beware: both quotation marks should be on
the top in SQL.

 concatenation: e.g. column1&column2. Two columns are ‘merged’.

 alternative column header: column1 as [alternative column header]. Alternative
column header is displayed only in the result of the query.

Examples:

 SELECT * FROM EMP;

 SELECT empno, ename FROM EMP;

 SELECT 6*30;

 SELECT 6*sal FROM EMP;

 SELECT 'TOM SELLECK';

 SELECT empno & 'identification' FROM EMP;

 SELECT empno as [identification] FROM EMP;

23

5. SELECT command

Structure of the SELECT command:

SELECT [DISTINCT] <field list>
[FROM <table, query name>
WHERE <row-condition>
GROUP BY < grouping aspects >
HAVING < group-condition >
ORDER BY <column1 [ASC | DESC][, column2 [ASC | DESC]][, ...]] >];

5.1. ORDER BY clause

ORDER BY: records/groups are sorted according to the given column or expression in
ascending or descending order. The default order is ascending (A to Z, 0 to 9).

Type of orders:

 ascending or alphabetical order: ORDER BY column1 [asc];

 descending or inverse alphabetical order: ORDER BY column1 desc;

 mixed: ORDER BY column1 desc, column2;

Several columns can be applied in ORDER BY clause. Records having the same value in the first
column are sorted by the value in the second column. All the further columns are considered,
if the records contain the same values in the previous columns. The column (or expression)
used after ORDER BY is not necessarily included in the select list.

5.2. Anomaly of missing data (NULL value)

Problem with NULL value: if a field is empty (not filled out), the value of the field is NULL. The
content of information: undefined (unknown). The result of the operations with fields
containing NULL value can also be NULL value. This may cause problems. For instance, the
result of sum is NULL, if any of the components is NULL. To obtain practical result, the NULL
value can be replaced by the built-in iif function. The structure of the iif function:

iif(expression; if true; if not true)

For example, an undefined NULL value can be converted to a definite 0 for calculations. But
the conversion causes distortion in the information:

iif(comm is NULL; 0; comm)

24

5.3. Omit duplicated data (DISTINCT)

DISTINCT: duplicated rows are displayed only once. For example:

SELECT job FROM emp; SELECT DISTINCT job FROM emp;

CLERK ANALYST

SALESMAN CLERK

SALESMAN MANAGER

MANAGER PRESIDENT

SALESMAN SALESMAN

MANAGER

MANAGER

ANALYST

PRESIDENT

SALESMAN

CLERK

CLERK

ANALYST

CLERK

5.4. WHERE clause

Row-condition: specifies filter conditions that determine the rows that the query returns.

Elements and their orders after WHERE clause (at simple condition):

I. expression (what do we compare?)

II. comparison operator (what is the comparison like?)

III. expression, value, list of value, interval, schema (what we compare to?)

Table 5.1 contains the comparison operators used in row-conditions. Both sides of operators
must be the same type of data.

25

Table 5.1. Comparison operators

Operator Purpose

= Equal, it can be used with character data type too (expressions on both

sides must be exactly the same – upper and lower case is important)
<> Not equal, can be also used with character data type. Note: in some

versions of SQL this operator may be written as !=

< Less than

> Greater than

>= Greater than or equal

<= Less than or equal

[NOT] BETWEEN Between two values, equality is allowed (closed interval)

[NOT] IN
Equals to any value of the list
(IN statement creates a series of OR statements)

[NOT] ALIKE Matches the looked for pattern (fits to the template)*

=[] Parametric query

*: In SQL ANSI92 language only ALIKE operator can be used. Access applies SQL ANSI89 language as default, which
recognizes both LIKE and ALIKE operators, however wildcards are different.

Table 5.2 contains wild-card characters used for ALIKE operator.

Table 5.2. Wild-card characters

ANSI89 ANSI92 Wildcard description

? or _ _ A substitute for a single character

[1-9] A substitute for a single digit

* % A substitute for zero or several characters

[] []
Any character, what is contained by the given range
E.g. [a-m] or [1-5] or [abcdef]

[!] [!]
Any character, what is not contained by the given range
E.g. [!a-m]

The date datatype is stored as a number by Access. This number indicates, how many days
went by since 1899. December 30 0:00. For example, 1899. December 31. 12:00 is resulted in
1.5 and vice versa. Accordingly, a date type can be compared to constant in conditions in two
ways: either the number of days went by since the basis date or the date written in ISO form:
#yyyy-mm-dd# is used (this date format works properly in all cases irrespectively the regional
settings).

Examples:

 SELECT ename FROM emp WHERE sal=1250;

 SELECT ename FROM emp WHERE ename= 'CLARK';

 SELECT ename FROM emp WHERE sal>comm;

 SELECT ename FROM emp WHERE sal NOT BETWEEN 500 and comm;

 SELECT ename FROM emp WHERE empno IN('7900','1234');

 SELECT ename FROM emp WHERE empno ALIKE'7900' OR empno ALIKE'1234';

 SELECT empno, ename FROM emp WHERE empno ALIKE'_[5-9]0%';

 SELECT ename FROM emp WHERE empno=[Identification number?];

 SELECT ename, hiredate from emp where hiredate IN(#28-09-1981#,29637);

26

5.5. Arithmetical, logical and concatenation operators

Table 5.3 contains the arithmetical operators.

Table 5.3. Arithmetical operators

Operator Purpose

+ addition (sum two numbers), 5+2=7

- subtraction (find the difference between two numbers), 5-2=3

* multiplication (multiply two numbers), 5*2=10

/ division (divide the first number by the second number), 5/2=2,5

\
divide the first number by the second number, and then truncate
the result to an integer, 5\2=2

^ raise a number to the power of an exponent, 5^2=25

MOD
divide the first number by the second number, and then return
only the remainder: 5 MOD 2 =1

A logical operator combines the results of two component conditions to produce a single
result based on them or to invert the result of a single condition (building complex conditions).
Table 5.4 contains the logical operators.

Table 5.4. Logical operators

Inputs Outputs of logical operators

A B AND OR EQV IMP NOT(A) XOR

0 0 0 0 1 1 1 0

0 1 0 1 0 1 1 1

1 0 0 1 0 0 0 1

1 1 1 1 1 1 0 0

0 NULL 0 NULL NULL NULL 1 1

1 NULL NULL 1 NULL NULL NULL 0

NULL 0 0 NULL NULL NULL NULL NULL

NULL 1 NULL 1 NULL NULL 1 NULL

NULL NULL NULL NULL NULL NULL NULL NULL

Table 5.5 summarizes the concatenation operators.

Table 5.5. Concatenation operators

Operator Purpose

+
Combines two strings to form one string with propagation of NULL values
(if one value is NULL, the entire expression becomes to NULL).

& Combines two strings to form one string.

27

6. SELECT command

Structure of the SELECT command:

SELECT [DISTINCT] <field list>
[FROM <table, query name>
WHERE <row-condition (sub query)>
GROUP BY < grouping aspects (sub groups)>
HAVING < group-condition >
ORDER BY <column1 [ASC | DESC][, column2 [ASC | DESC]][, ...]] >];

6.1. Functions

The built-in functions in the MS Access execute operations to transform and process data. The
functions can be divided into two types according to the number of input records (Fig. 6.1.).

Fig. 6.1. Classification of functions according to the number of input records

The characteristics of functions:

 the input and output types of data can be different,

 the functions can be embedded into each other.

The main characteristics of the row functions:

 the input is one argument in all cases (column name, constant, expression),

 one return value belongs to each record,

 the function can be applied in select-list, WHERE, ORDER BY or HAVING clauses.

According to the type of in- and output, the row functions can be classified into further groups.
The most relevant ones are introduced. Table 6.1 contains the most typical row functions.
(The user can also define row functions). Some built-in functions belong to several groups,
such as Day function, which can be assigned to the Conversion and Date/time groups too.

Function

Row function
(1 record)

Group function
(several records)

28

Table 6.1. Typical built-in row functions in Access

Group Function Description

D
at

e/
ti

m
e

CDate(number) Number is converted into Date type

Day(date) Returns the day of the month (integer 0-31)

WeekDay(date, [firstdayofweek]) Takes date as a parameter and returns a
number (integer) between 1 and 7 indicating
day of week; firstdayofweek: 1 if Sunday, 2 if
Monday, etc. By default 1.

Date() System date

Time() System time

Now() System date and time

WeekDayName(weekday,
[abbreviation], [firstdayofweek])

Takes numeric value as a parameter and
returns a week day name.

 weekday: number of weekday 1-7
 abbreviation:

o 0: full name is the result
o -1: abbreviated name is the result

 firstdayofweek: see WeekDay function

M
at

h
em

at
ic

Abs(number) Returns the absolute value of a number

Int(number) or Fix(number) Returns the integer portion of a number

Round (number, [decimal_places]) Returns a number rounded to a specified
number of decimal places

Sqr(number) Returns a Double specifying the square root of
a number

Te
xt

LCase(string) Returns a String that has been converted to
lowercase

UCase(string) Returns a Variant containing the specified
string, converted to uppercase

StrConv(string, n) Returns a Variant converted as specified
If n:

 1: converts the string to uppercase
characters

 2: converts the string to lowercase
characters

 3: converts the first letter of every
word in string to uppercase

Len(string) Returns a long containing the number of
characters in a string

Note: Different first day of week settings can cause error in result if WeekDayName and
WeekDay functions are used at once. Iif function, what was introduced in chapter 5.2. belongs
to the advanced/logical functions.

Examples:

 SELECT CDate(40235);

29

 SELECT Weekday(hiredate, 2) FROM EMP;

 SELECT Date();

 SELECT Round(Sqr(13), 2);

The main characteristics of the group functions (called as aggregate functions):

 return a single value per groups which is calculated from values in any column
considering all records of the group,

 records containing NULL value are not taken into consideration,

 with use of DISTINCT the recurring values are taken into account only once,

 can be applied in the SELECT list, in HAVING or ORDER BY clauses.

Table 6.2. contains the group-functions.

Table 6.2. Group functions in the Access

Function Description

Sum() Calculates the total value of all records in the group.

Avg() Calculates the average value of all records in the group.

Min() Returns the lowest value in the group.

Max() Returns the highest value in the group.

Count()
Simply counts the number of entries in the group.
(Number of records in the group can be calculated by this function.)

StDev() Calculates the standard deviation across all records in the group.

Var() Calculates the variance across all records in the group.

First() Returns the value of the first record in the group.

Last() Returns the value of the last record in the group.

It is not necessary to create groups with GROUP BY expression in order to use the group
functions. The operation without GROUP BY expression concerns about the entire table (all
records are assigned to one group). Example:

 SELECT Avg(sal) FROM EMP;

6.2. GROUP BY clause

The records can be assigned to groups. The column name(s) being the basis of grouping can
be given after the GROUP BY expression. The records containing identical value in the specified
column(s) are assigned to one group. It is recommended to choose such a column which
contains repeated values. This column should be displayed also in the select list. It may contain
only group-specific values (grouping column(s) or expressions created with group functions).

If more than one column is defined as grouping aspect, the query takes into consideration the
grouping aspects from left to right. Different order of grouping aspects is resulted in different
operation. If more than one grouping aspect is applied, they can be either independent or
embedded.

30

After ‘order by’ the values also can be used that are not appeared in the select-list. An
alternative column name may be used after the ‘order by’; but it must not be used after ‘group
by’ and ‘having’.

GROUP BY <column1>, <column2>, …, <columnn>

Fig. 6.2. shows an example for embedded grouping. (E.g. classification of employees according
to their residence).

Figure 6.2. Grouping according to region – county – city

Fig. 6.3. shows an example for grouping by independent aspects (deptno, job). The order of
grouping aspects influences the order in the result list (Table 6.3.). (The employees as entities
are indicated by circles with numbers.)

Table 6.3. Result lists of different sequence of grouping aspects

GROUP BY deptno, job GROUP BY job, deptno

deptno job Count job deptno Count

10 CLERK 1 ANALYST 20 2

10 MANAGER 1 CLERK 10 1

10 PRESIDENT 1 CLERK 20 2

20 ANALYST 2 CLERK 30 1

20 CLERK 2 MANAGER 10 1

20 MANAGER 1 MANAGER 20 1

30 CLERK 1 MANAGER 30 1

30 MANAGER 1 PRESIDENT 10 1

30 SALESMAN 4 SALESMAN 30 4

Example: What is the average salary of superiors’ employees?

 SELECT mgr, Avg(sal) FROM EMP GROUP BY mgr;

Region 1 Region 2

County 1

County 2

County 3

County 4

County5
City 1

City 2

City 3
City 4

City 5

City 6

31

10 20

CLERK
PRESIDENT

CLERK

ANALYST

ANALYST CLERK

20 10

20

1. grouping GROUP BY deptno, job

2. grouping GROUP BY job, deptno

30

MANAGER

SALESMAN

MANAGER

7782

7839

7934

MANAGER

7788

7566

7902

7369 7876

7499 7521

76547844

7698

CLERK

7900

7788 7902

30

7934

7369 7876

7900MANAGER

10

20

30

7782

7698

7566

PRESIDENT

10

7839

SALESMAN

30

7499 7521

76547844

Figure 6.3. Grouping according to department (deptno) and job

6.3. HAVING clause

32

The created groups can be filtered by simple or complex group-conditions. The structure of
the group condition is similar to the row condition. The only difference is that on the left side
of the condition should be a group-specific value (alternative column name cannot be used in
the condition). Group-condition is applied after HAVING.

Example: What is the highest salary among the employees in superiors’ groups, where the
superior’s ID is not equal with 7452 or 7899?

 SELECT Max(sal) FROM EMP GROUP BY mgr HAVING mgr<>'7452' OR mgr<>'7899';

The group condition excludes whole groups, whereas row condition just records. Fig. 6.4.
shows the differences between the row and group condition.

10 20

CLERK
PRESIDENT

CLERK

ANALYST

30

MANAGER

SALESMAN

MANAGER

7782

7839

7934

MANAGER

77887788 79027902

7369 7876

7499 75217521

76547844

7698

CLERK

7900

7566

Group condition
HAVING job!=’ANALYST’

Row condition

WHERE empno!='7521'

Figure 6.4. Differences between row and group condition

Row and group condition are applicable at the same time. In this case, the grouping method
is based on the result list filtered by the row condition. The groups can be filtered further by
the grouping condition.

33

7. Complex queries

The already studied simple queries based on one table. However, the queries can be built on
other queries or also several objects (mixed tables and queries) at the same time. Queries may
be cumulative, namely, they can be built on each other in many levels.

7.1. Queries based on many (related) tables

Columns in the select list of the SELECT command may be originated from different tables in
the SQL language. In this case, all source tables should be listed after the expression FROM. If
data are listed from different tables attention needs to be paid to the following:

 If the column names in the source tables are equal, it should be noted in the select list,
which table’s data should be displayed.

 If the source tables are connected, it should be indicated in the row condition of
SELECT command (the equality of the connector fields should be prescribed as
condition after WHERE command); otherwise the query is resulted in all permutations
of the records.

Example:

 SELECT ename, job, emp.deptno, loc
FROM EMP, DEPT
WHERE emp.deptno=dept.deptno;

7.2. Cumulative queries

After saving a query, it can be applied as a table in the further processing. Queries derived
from another query are called queries based on each other (cumulative queries). Among the
column names at least one item is originated from another query. Cumulative queries are to
be applied, if not only a constant, but a value depending on the content of another source
object (table, query) is considered in the SELECT command. This value defined by the so-called
subquery may be used

 in the select list,
 on the right side of the row condition,
 on the right side of the group condition.

The subquery may return with one single value, several (finite number) values or value pair
(triple value…) lists. When a subquery is applied in a condition, the number of the columns
and the used operators should be modified according to the returned set of results. In the first
step always the subquery should be created. The so called external query is built on this.
Several subqueries can be included by an external query at the same time.

Processing time can be increased in the case if a query based on another queries. If the values
of the basis queries are constant, it is worth to record the constant values into a table in order
to avoid the increasing processing time.

34

Example: Whose salary is the highest?

First, it is necessary to determine how much the highest salary is. In the second step, the
salaries of the employees are compared to the highest salary determined in the subquery.

1. SELECT max(sal) as max_sal FROM EMP;

2. The query is saved as query_1.

3. SELECT ename, sal FROM EMP, query_1 WHERE sal=max_sal;

7.3. Embedded queries (subqueries)

In addition to the queries based on each other, the embedded query gives also the opportunity
to take into consideration not just constants but any value depending on the content of
another table. In this case, the calculated value or values can be given with SELECT command
in brackets. This value defined by the embedded query (similar to the queries based on each
other) can be applied

 in the select list: if the result of the embedded query is a single value,
 on right side of the row condition,
 on right side of the group condition.

Advantage of the embedded query compared to queries based on each other is that the whole
query can be defined within a single SQL command. Table 7.1 contains the list of operators,
which can be applied if embedded query is resulted in several values at the same time.

Table 7.1. Comparison operators used with subqueries

Operator Description

ANY or SOME

Used in row and group conditions. Must be preceded by =, !=, >, <, <=, >=.
It can be followed by any expression or subquery that returns one or
several values. The records meet the condition, where the compared value
meets the condition in case of any value in a list or returned by a query.
The SOME and ANY comparison operators do exactly the same and are
completely interchangeable.

ALL

Used in row and group conditions. Must be preceded by =, !=, >, <, <=, >=.
It can be followed by any expression or subquery that returns one or
several values. The records meet the condition, where the compared value
meets the condition in case of all values in a list or returned by a query.

[NOT] IN
Used in row and group conditions. It compares a value to each value in a
list or returned by a query. The records meet the condition, where the
compared value equals any value in a list or returned by a query.

[NOT] EXISTS
The result of the subquery is true if the result list of the embedded query
is not empty. Otherwise it is false.

Examples:

35

1. Whose salary is the highest?

SELECT ename FROM EMP WHERE sal=(SELECT max(sal) FROM EMP);

2. Whose salary is higher than the lowest salary of SALESMEN?

SELECT ename FROM EMP WHERE sal> ANY(SELECT sal FROM EMP WHERE job='SALESMAN');

7.4. Crosstab queries

Queries being introduced until this chapter listed the results in rows below each other. There
is an opportunity in the Access to display data grouping both horizontally and vertically as a
matrix. This is called crosstab query, where number of columns and rows depends on content
of the table. A crosstab query aggregates the results by two independent sets of values
(columns in the original table) - one set down the side (row headings), and the other across
the top (column headings). Accordingly, the elements of the query (matrix) are created by
group (aggregate) functions as e.g. sum, average.

The advantage of the cross-table query is that the aggregated data are displayed in a more
interpretable way. The differences are shown in Table 7.2. and Table 7.3.

Table 7.2. Traditional query with double grouping (aggregation)

GROUP BY job, deptno

job deptno Count

ANALYST 20 2

CLERK 10 1

CLERK 20 2

CLERK 30 1

MANAGER 10 1

MANAGER 20 1

MANAGER 30 1

PRESIDENT 10 1

SALESMAN 30 4

Table 7.3. Cross-table query

 ANALYST CLERK MANAGER PRESIDENT SALESMAN

10 1 1 1

20 2 2 1

30 1 1 4

The SQL structure of the cross-table query:

TRANSFORM group function
SELECT row header, [group function]
FROM table_1

36

[WHERE row-condition]
GROUP BY row header
PIVOT pivotfield (column header) [the condition or method of grouping/aggregation];

Where:

 TRANSFORM – after the headword the group (aggregate) function is indicated, whose
result is displayed in matrix cells.

 SELECT – after the headword the grouping aspect of the row header is indicated. Here
is possible to insert the group (aggregate) function once again in order to add a column
to the result matrix, which contains the sum of rows.

 FROM – after the headword the source of the select list is given.
 WHERE – after the headword any additional selection criteria can be given concerning

the result list.
 GROUP BY – after the headword the grouping aspect of the row header is indicated.
 PIVOT – after the headword the grouping aspect of the column header is indicated.

Here can be specified any grouping condition or method regarding column header.

Example: display in cross-table query the number of employees having the same superior and
the same job, in the case when job is ANALYST, CLERK, MANAGER or SALESMAN.

TRANSFORM Count(empno)
SELECT mgr, Count(empno)
FROM EMP
GROUP BY mgr
PIVOT job IN('ANALYST', 'CLERK', 'MANAGER', 'SALESMAN');

Table 7.4 contains the result.

Remark: a new column has been added containing the sum of rows (Expr1003), which is
calculated from the values of cells as the results of Count(empno) expression in the select list.

Table 7.4. Cross-table query in the sample database

mgr Expr1003 ANALYST CLERK MANAGER SALESMAN

7566 2 2

7698 5 1 4

7782 1 1

7788 1 1

7839 3 3

7902 1 1

37

8. DDL commands

The data definition commands include the commands to create and manage the structure of
database (tables, validity rules, etc.).

8.1. CREATE command

New database object can be created with the CREATE command (e.g. table, procedure).

Create table:

The common structure of the CREATE command to define a table:

CREATE TABLE <table name>
(<column1 name> type(length) [constraint list] [DEFAULT value],
 <column2 name> type(length) [constraint list] [DEFAULT value],
…
<column name> type(length) [constraint list] [DEFAULT value]);

Table 8.1 contains the types of data.

Table 8.1. Types of data used in Access SQL

Types of data Size Description

autoincrement 4 bytes Counter, starts from 1

identity(x,y) 4 bytes Counter, starts from x, difference is y

byte 1 byte Integers 0 to 255

single 4 bytes Floating-point number, max 7 numerical digit

number 8 bytes Floating-point number, max 15 numerical digit

integer 2 bytes Long integer, from -2 147 483 648 to
+2 147 483 647

currency 8 bytes Currency

char(n) <= 255 characters Shorts text; fixed-length text strings; n: max.
number of characters

text Long text; variable-length text strings

datetime 8 bytes Date

yesno 1 bit Yes/No

longbinary <= 2 GB OLE object, e.g. excel file can be attached to a
record

8.2. Validation rules (CONSTRAINTs)

Validation rules (called constraints) are defined during creating a table. The data elements are
checked in case of data input or modification, whether they satisfy the condition of constraint
or not. If yes, they can be inserted/modified. If the validation rule has a name, the error is
indicated through this name at data input/modification. The validation rules have two types:

 Field Validation Rule: the name of the column is included in the condition.
 Record or Table Validation Rule: several columns from the same table are included

in the condition.

Table 8.2 contains the often used validation rules.

38

Table 8.2. Often used validation rules in the Access SQL

Validation rule Description

Not null It must be filled

Unique Data repetition is not allowed in the column (must be unique)

Primary key Not null + Unique

References Foreign key - type, length have to be equal with primary key

Check Optional (user-defined) condition

Example:

CREATE TABLE service1 (
S_ID autoincrement primary key,
Plate_Nr char(7) not null,
Type char(25),
Odometer number,
Production_Date Datetime,
Date_of_service Datetime not null,
Casco yesno,
Admin_ID integer references EMP(empno),
constraint [Odometer cannot be 0 or minus] check (Odometer > 0),
constraint Production_Date check (Production_Date < Date_of_service));

Note: the references constraint implies constraint regarding the data type. The data type of
the foreign key must be the same (when creating the relationship) as the type of the primary
key.

The Validation Text is an ‘error message’ to alert the user about any mistakes when the
entered value does not meet the condition defined by the user in the validation rule.

8.3. Default value

Default value can be defined to columns during creating a table. The default value is inserted
automatically if a new record is created, but its modification is also possible. It is applied when
the majority of the entities (records) have the same value regarding one attribute. The default
value is defined after the validation rule regarding the column using the DEFAULT headword.
The syntactic rules required by the data type should be considered. Default value can be not
just constant but any value returned by a function.

Examples:
…
column1 number default 5,
column 2 char(25) default 'BME',
column 3 datetime default now(),
…

In the first case the number 5, in the second case the text BME and in the third case the current
time is the default value.

39

8.4. ALTER command

The ALTER command is suitable for modifying the existing structure of the database object.
Modifying the table structure can be particularly hazardous in case of tables with stored data,
therefore it requires special attention. The following properties of a table can be modified by
using the ALTER command:

 Add new column:
ALTER TABLE table1 ADD columnn type [constraint DEFAULT value];

Example: ALTER TABLE service1 ADD manufacturer char(25) not null;

 Modify existing column:
ALTER TABLE table1 ALTER COLUMN columnn type [constraint DEFAULT value];

Example: Alter table service1 ALTER COLUMN manufacturer char(25) unique;

 Delete column:
ALTER TABLE table1 DROP COLUMN columnn;

Example: Alter table service1 DROP COLUMN Casco;

 Add validation rule:
ALTER TABLE table1 ADD CONSTRAINT constraint1 CHECK (logical condition);

Example: Alter table service1 ADD CONSTRAINT [Not allowed to create a new service
record in the past] CHECK (Date_of_service > (Now()-3));

 Remove validation rule:
ALTER TABLE table1 DROP CONSTRAINT constraint1;

Example: Alter table service1 DROP CONSTRAINT [Odometer cannot be 0 or minus];

8.5. DROP command

DROP command is used to delete an existing database object ENTIRELY (both the structure
and the content are deleted). Components of a table can also be deleted separately by drop
command, which was presented at the ALTER command in chapter 8.4 (deletion of the column
and validation rule).

The structure of command to delete the entire table:

DROP TABLE <table name>;

Example: DROP TABLE service1;

Note: if a table has valid constraint with CHECK or is in a relationship, it cannot be removed
from Access in general.

40

9. DML commands

Data Manipulation Language (DML) commands are used to manage data in a database. DML
commands are not executed irrevocably, they can be rolled back until ‘commit work’. The
commands are used to retrieve and manipulate data in a relational database. They modify the
stored data but not the structure. The SELECT command was detailed in the previous chapters,
so in this chapter the most common data input and modification commands are introduced.

9.1. INSERT INTO command

INSERT INTO command is used to insert data into a table. Ways of data input are the following:

 Input a new record: values of the record are given by the user. The common structure
of the command:

INSERT INTO <table name> [(list of columns)]
VALUES (list of values);

If value for all the columns of the table is defined, the list of columns can be omitted.
Otherwise, the list of columns defines which fields (and in which order) are filled with
data.

Example:

 INSERT INTO EMP (empno, ename, job, hiredate, sal) VALUES ('1001', 'FOG',
'ANALYST', '1989.03.21.', 1500);

 Note: the default value is filled by the Access in all cases; even if the user doesn’t
define it during data input.

 Input/copy of data from other table or query: it is applicable, when the values of new
records are stored in another table or produced by a query. If the structure of ‘source’
and ’destination’ tables (queries) are exactly the same and all columns of records are
copied, the column list can be omitted and select list contains * sign. In other cases,
coordination is needed between the content of the column list and the select list in
order to insert the data elements into the proper field. The sequence of column list
and select list should be the same. Common structure of the command:

INSERT INTO <table name_1> [(list of columns)]
SELECT <select-list>
FROM <table name_2> or <query_1>
[WHERE row condition];

Example:

41

INSERT INTO DOLG
SELECT *
FROM EMP
WHERE empno='7899';

Note: calculated values are not stored in table in general because of redundancy.
Except when further queries use it to reduce the calculation time.

9.2. UPDATE command

The command is appropriate for modification of data of existing records. The common
structure of the command:

UPDATE <table name>
SET <column1>=<exp1>, <column2>=<exp2>,…
[WHERE <condition>];

If the WHERE condition is not given, the data are modified in all records.

Example: increase the salary with 500 for the employee, who has ID 7902

UPDATE EMP
SET [sal] = [sal]+500
WHERE empno='7902';

Note: one data element of a record can be deleted with the UPDATE command, if the NULL
value is set up as a new value.

9.3. DELETE FROM command (record, table content)

The command is appropriate for deletion of records from tables. The common structure of
the command:

DELETE FROM <table name>
[WHERE <condition>];

If there is no row condition in the command, all the records are deleted. (But the structure of
the empty table remains.)

9.4. UNION of records

42

The union query merges the results of two or more independent queries or tables having the
entirely same structure into one result set. The command connects two SELECT queries with
the UNION word. The result set contains records selected from both queries (without
repetition). The common structure of the command:

SELECT command 1
UNION
SELECT command 2;

Example:

SELECT * FROM EMP
UNION
SELECT * FROM DOLG;

9.5. MAKE TABLE query

The result set of a query can be saved into a table using ‘make table’ query. The existing table
with the same name is deleted before execution of the query; then it is re-created and
uploaded with data. This command belongs to DML command group as the SELECT command
is applied. The common structure of the command, highlighting only the differences:

SELECT <select-list>
INTO new_table
FROM <table name_1> or <query_1>;

Note: calculated values are not stored in table in general because of redundancy. Except when
further queries use it to reduce the calculation time.

43

10. Practice assignments

You may find in this chapter some typical assignments to prepare for the midterms.

10.1. Exemplary assignments for the 1st midterm

Queries based on the sample database:

1. List jobs at the company! Each job is displayed only once.
2. List employees in descending order by their manager’s ID!
3. List data of departments with new English header.
4. List name, job and department ID of employees. Insert a new column containing the

“Department:” expression before the ID.
5. How much is the yearly income of the employees?
6. List name of the employees in ascending alphabetical order, who have undefined

commission value.
7. List name and job of the employees, who work not at department 20.
8. Who are the employees whose name contains A in the second position?
9. Who are the employees whose department ID ends with 9?
10. List name of the employees, whose boss is not the employee with ID 7788 or 7839?
11. Who are the employees, whose commission is between 200 and 600?
12. Who were hired in December 1981?
13. List the employees, whose name begins with not M or not A.

Conceptual models: create the table structures taking also into account all parts of the
assignment. Record some data in order to exemplify the results of the queries.

1. Charging points and their monthly checks are registered at an EV charging station. There
are 4 charging points: 1 normal, 1 fast and 2 ultra-fast chargers. Charging capacity and type
of connector are registered. The counter of the electricity meter and occurrence of failures
are also registered during monthly checks.

 List the charging points in ascending order by charging capacity.
 List the monthly checks of ultra-fast chargers in descending order by date.

2. Airplanes and their bases of an air company are registered. There are 5 planes; 3 Boeing
have base in Budapest and 2 Airbus have base in Rome. Type, year of manufacture, date of
launch, and the capacity of the planes are registered.

 List planes based in Budapest in descending order by date of launch.
 How old will the airplanes be on 17.05.2020?

44

10.2. Exemplary assignments for the 2nd midterm

1. How many days passed since the revolution of 23.10.1956?
2. Calculate the value of √7 with 3 decimals.
3. What is the distance between points A(-4; 12) and B(7;2)?

Queries based on the sample database:

4. On which day was FORD hired (name of the day)?
5. Name of the employee, who was hired earliest.
6. What is the average salary in the SALESMAN and CLERK jobs?
7. How much extra salary in % should be paid off in order to attain at 2500 as average

salary?
8. Who are the employees, who earn more than BLAKE and how much is the difference?
9. Whose commission is the highest and what is the proportion (in %) of his commission

and income?
10. Who work in New York?
11. How many employees work in the different cities?
12. How many employees work at the departments in the different jobs (let’ s use crosstab).
13. How much higher is the salary for the best paid employee than JONES’s salary?

Conceptual models: create the table structures using SQL DDL commands taking also into
account all parts of the assignment. Record some data using DML commands in order to
exemplify the results of the queries

1. Charging points and their monthly checks are registered at an EV charging station. There
are 4 charging points: 1 normal, 1 fast and 2 ultra-fast chargers. Charging capacity and type
of connector are registered. The counter of the electricity meter and occurrence of failures
are also registered during monthly checks.

 Delete the normal charger from the database and register another fast one.
 How much is the total charging capacity in the charging station?

2. Airplanes and their bases of an air company are registered. There are 5 planes; 3 Boeing

have base in Budapest and 2 Airbus have base in Rome. Type, year of manufacture, date of
launch, and the capacity of the planes are registered.

 Modify one Boeing airplane’s base to Rome.
 How much is the average age of the airplanes in the different bases?

45

REFERENCES
(in Hungarian)

[1] Csiszár, Cs. – Sándor, Zs.: Közlekedési informatika (jegyzet) 2014.

[2] Csiszár, Cs. – Westsik, Gy.: A közlekedési informatika kutatása és oktatása a BME

Közlekedésüzemi és Közlekedésgazdasági Tanszékén. Közlekedéstudományi Szemle

LXIV. évf. 2. szám 44-52.o. Budapest, 2014.

[3] Munkácsiné Lengyel, E. – Tóth, J. – Csiszár, Cs. – Juhász, J.: Közlekedési informatika

(jegyzet) 2004.

Database-theme literature collection

(in Hungarian)

Szelezsán János: Adatbázisok (példatár is)

Bálint Dezső: Adatbázis-kezelés (Talentum kiadó)

Jeffrey D. Ullmann – Jennifer Widom: Adatbázis-rendszerek

Kende Mária - Kotsis Domokos - Nagy István: Adatbázis-kezelés az ORACLE rendszerben

Michael Abbey - Michael J. Corey - Ian Abramson: Oracle 8i kezdőknek

Bodnár Ibolya - Nagy Zoltán: Adatbázis-kezelés

Stolniczki Gyula: SQL kézikönyv

More information can be found:

https://docs.oracle.com/cd/A87860_01/doc/server.817/a85397/operator.htm

https://support.office.com/en-us/article/Table-of-operators-e1bc04d5-8b76-429f-a252-e9223117d6bd

https://support.office.com/en-US/article/ORDER-BY-Clause-E8EA47F7-5388-460A-BEC8-DCC81792D762

http://www.w3schools.com/sql/sql_like.asp

http://freemarker.incubator.apache.org/docs/dgui_template_exp.html

https://developer.mozilla.org/hu/docs/Web/JavaScript/Guide/Expressions_and_Operators

http://www.w3schools.com/sql/sql_wildcards.asp

http://www.w3schools.com/sql/sql_functions.asp

https://oracle-base.com/articles/misc/all-any-some-comparison-conditions-in-sql

https://docs.oracle.com/cd/A87860_01/doc/server.817/a85397/operator.htm
https://support.office.com/en-us/article/Table-of-operators-e1bc04d5-8b76-429f-a252-e9223117d6bd
https://support.office.com/en-US/article/ORDER-BY-Clause-E8EA47F7-5388-460A-BEC8-DCC81792D762
http://www.w3schools.com/sql/sql_like.asp
http://freemarker.incubator.apache.org/docs/dgui_template_exp.html
https://developer.mozilla.org/hu/docs/Web/JavaScript/Guide/Expressions_and_Operators
http://www.w3schools.com/sql/sql_wildcards.asp
http://www.w3schools.com/sql/sql_functions.asp
https://oracle-base.com/articles/misc/all-any-some-comparison-conditions-in-sql

46

APPENDIX

Appendix 1: Data modelling assignment

Prepare a logic data model in 3NF identifying the appropriate entity types.

Define the data types and length of attributes.

Topic: Register of an automatic parking garage

Stored attributes:

IN_TIME (time of entering the parking garage)

PLATE_NUMBER

PLACE_ID (identifier of the parking place)

OUT_TIME (time of leaving the parking garage)

BRAND (brand of the vehicle)

PARKING_FEE (parking fee per hour, depends on the entering time)

PARKING_ID (identifier of parking)

OBSERVED (is there camera surveillance?)

PARKING_PROPERTIES (description of irregular parking)

SEGMENT (in which segment is the parking place?)

COLOUR

LEVEL (on which level is the parking place?)

TYPE

47

Appendix 2: Data modelling assignment

Prepare a logic data model in 3NF identifying the appropriate entity types.

Define the data types and length of attributes.

Topic: Register of cargo traffic at a haulier company

Stored attributes:

V_ID (vehicle identification number)

DRIVER_NAME

DEP_TIME (departure time)

DISTANCE

PLATE_NUMBER

INJURY

ACCIDENT_REP_NR (accident report number)

BIRTHDAY

LAST_SERVICE_DATE

ACCIDENT_TIME (accident date and time)

CARGO_WEIGHT

MILEAGE (kms have been run before start)

ARR_TIME (arrival time)

ACCIDENT_CIRCUM (circumstances of the accident)

WAYBILL_NR (number of waybill)

GUILTY (is the driver guilty?)

VEHICLE_TYPE

DRIVER_PROPERTIES

CARGO_VALUE (value of transported cargo)

LICENCE_NR (driver’s licence number)

DESTINATION (city name of destination)

DEPLOYMENT_DATE (date of first deployment)

DAMAGE_VALUE (value of damage)

